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The Galilean Relativity Principle for a 16 Moments Model in
Classical E.T. of Polyatomic Gases
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Abstract: | analize here a 16 moments model for polyatomic gases because this is suggested by the limit, for
light speed going to infinity, of the corresponding relativistic model. The Galilean relativity principle is
imposed by using a methodology which was introduced some years ago by Pennisi and Ruggeri in the
framework of monoatomic gases. It is here proved that it can be applied also for the equations of polyatomic
gases. Moreover, some integrals will be calculated which are useful to find the explicit closure of the balance
equations.
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I. Introduction

The present model is suggested by the non relativistic limit of that in the article [1]. A goal realized by
this work was to find a relativistic model with 15 moments that draws inspiration from [2], but avoiding to take
the traceless part of the third balance law. In this way, one obtains a 15 moments model. Another goal realized
in this presentation was to find the relativistic version of another model with 15 moments recently appeared in
literature [3] in the classical context. This is different from the previous one in which the internal motion is
globally considered, while in [3] the internal motions are separated into the rotational part and the vibrational
part. To avoid confusion between these two models, they were compacted in only one, even if at the cost of
obtaining a 16 moments model; in any case, the present model can be splitted in those with 15 moments which
are its subsystems obtained simply by putting equal to zero the Lagrange multiplier corresponding to one or the
other of the new two balance equations. (See [4] for a general treatment of subsystems). In [1] the non-
relativistic limit of its balance equations has been found and they are the following (1). To find their closure it is
necessary to impose the Galilean Relativity Principle (In the relativistic version this was replaced by the
Einstenian Relativity Principle which is easier to impose by simply using the covariant formulation). This is the
purpose of the present article thus preparing the ground to find its closure in subsequent works. Obviously, in
the subsystem corresponding to [3], the results are not different from those found there; this confirms the
present considerations, in addition to the fact that they are included in a larger context, that of the 16 moments.
The article [2] has inspired other subsequent works such as [5]-[10]; so also the present one inserts in this
framework. In harmony with what has just been said, | analize here the model which has the following balance
equations:

8 Ag + Ay =0 , AN + AT =0 |, 9,AFR + @Al = plit2
A + AL =0 , AT +5:AT = P (1)
OhAs + AL =Py . 0.H +aHY = P

Here Agp, _.'-1{], A, -1‘] are the densities of mass, momentum and energy, while (1)1 2.4 are
their conservation laws of mass.
Moreover, we have
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Here T and T": are the internal energies due to rotation and vibration respectively,
©(TH) and (I") are their measures depending on the particular gas under considera-

tion, while f(z',¢,&/,T%,T") is the distribution function.

The above quantities are the independent variables. Some of the fluxes are equal to the

independent variable in the subsequent equation; the remaining ones are
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(3)

The entropy principle for the balance equations (1) amounts in assuming the existence
of the 4-potentials &', " and of the Lagrange multipliers A, Ai;. Aijia. . Mi;, ¥ such

that
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(4)

(5)

Here the eqs. (5)1 3 express the fact that some of the Huxes are equal to the independent
variable in the subsequent equation, while eq. (5)4 expresses the fact that the left hand
side of eq. (5)2 is symmetrie, so also the right hand side must be symmetric. Finally,
(5)5.6 express the fact that A”' and A}, in their kinetic formulation (3), are symmetrie

tensors.

Il. The Galilean Relativity Principle

Oy

We impose now the the Galilean relativity principle using the methodology introduced
n [11] in the framework of monoatomic gases. We prove here that it can be applied

also for the equations of polyvatomic gases.

Firstly, we want to see how our variables change with a change of a reference frame
moving with respect to the other with a translational rectilinear uniform motion whose
velocity is vl; so we indicate with a supplementary index "a” a quantity referred to the
absolute reference frame and with a supplementary index "r” a quantity referred to the

relative reference frame.
We obtain

Aga = Ager . A” = A L+ Agpud A""’ AI'I" + EAH;} ?ﬁ") + Agrvituiz
Ag = A1+ 2 AO,,'U}”— — Aurt‘

AL = AR+ Ap el —|—2Ah”bh«,.— + 2A5 v vit + Al 02 + Agvel

Asg = Asr + 4A1,,.th + 2.#-1[1\7--1::1r + 4Au.,, Vphr Ve + 4Aurt!m-u, + ADr‘l‘_-‘.,_ .
HI — H{f-
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AT — ol Al = AT + AL oM zA""D’“'vh,, + 24 op 0l + A2 + Af vl 02
AL —w Aq_a = AL, + 4A1r?_,hq— + 247 v + 4A“’”‘vh7vh + 4AOTL;W1“ + Aurt.',r
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To prove these relations it suffices to use eqs. (2) and (3). By substituting in them &
with & = € + vl we find Aga, Ag., ALY, Aga, A}, Aga, AR, A, A}, respectively
(we recall that d{:ﬂ = d!;",n because the Jacobian of this change of mtegratlon variables
is equal to 1); hv substituting in them &' with £ we find Aqg,. Au,.* AE}:Q, Ay, Al,.? Agy,
AR ATY AL respectively. By substituting these expressions in (6) we see that they

are identically satisfied ‘v’vf_ and this completes their proof.
Now we want to obtain the transformation law of the Lagrange multipliers. From

(4)1-6, we have dh], =
= AgadAg + AR d Niya + AL d Niyiga + Atad o + AL dptiya + Asgdvg + HY dpy e =
— Aot (Al Aot ) N+ (A2 4240108+ Aotf2) d Nt
(Alr +2 AD‘F‘I’ﬁ-T + AOTT" ) dpg+
(A + At + ZAM'T_‘;T,— + ﬁAu,.t‘;rT'b” + Anri‘r + Agrvgwf}) fd i 0+
(Ag,, + 4A1,.1;w + ‘2A1,.1' - 4AD,.1;M-‘L;‘~T - 4ADT1,;W1' + Appv; ) dpt, + AL Py =
= Agrd (Aa + U5 Nija + V1 02 Nijana + 02 g + V20 iy 0 + v,,va) +
+ Ail {}.ﬁm + 21“1- Aiyisa + 2V lta + 21'1,,,1'7. Hing + tL,,uI-m + 41'31'1”;;3) +
A%ﬂz d ()\nigu + 204 7 fliga t+ 41—'1'17'1’1?214”41) + Aird {ﬂu + 1’3—'#1'1& + 21‘3—"’1}) +

AR d (figa + 4vi,7Va) + Agp dve + AL dpva
where, in the passage after the second line, we have used eqs. (6).
Since h' is a scalar function, this quantity must be equal to
dhl = Agpd A+ A d).hf+A“”? d Aiyigr +A1rd plr + A Ld iy + Agp d +A1‘ Sy
By comparing the two expresions, we deduce that
Ar = Aa + U Aiga + V02 N iaa + U7 o + VRO i + Vg
Aitr = Aira + 202 Niging + 2Vsy7ita + 204702 ling + ‘v?mm + 41’31’i1rva :

Aiyiar = Aigiga + 2Ur(i; fig)a + HWiyr ViarVa
Py = g + 'U:-—lf-ﬁﬂa + 21"3—”&. s (7)
iy = Hija T 405700,
Ur = Ug
Hvr = [Iva .
This is the requested transformation of the Lagrange multipliers.
This system can be inverted and gives

Ao = Ay — U.f.l Aigr + ?J ",\nm,— + 'U e — 'L' 'u i + t:iv,-.,

Aija = Aiyr — 21—':-2/\i1i2r — 2047ty + 21‘;‘|T?~'1-2ﬁ'1'2r + Tf:rﬂhr - 41’31"511'7":' s

Aiviza = Aigiar — 20, () Pigyr + Wigr Viar Vs

Ma = fly — 1’3—'#1'1:- + QUEVJ- s

Mija = figr — 4 Vigr Up,

Vg = Uy

Hyva = Hye,
that is, again the system (7), but with the suffixes "a” and "r" exchanged and with
— v4r instead of v;-. Now, for the sequel, it is important to prove that the quantity

: e 2T - 27 47 v
e ) Rl G B G R
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is a scalar, that is, y; = v,
This is a consequence of (7) because

o e 21
Xr = Ar Ay (€0 = 02) + Nigigr (€7 —07) (€2 — 02) + pip ( €6 — 26" 0pr +07 + —) +

]

+ Miyr [Eii - U;j-l) (éhffh - 2“:!17-’.’17 + _UE + %) + vy [(&héh) +4 (ﬁhvm—)g + ’Ui—

v

4 () (EFur) +2 (€hn) 02 — 4 (hunr ) o2 + % (&"¢ — 26 unr + 1)] R

where we have indicated the absolute velocity with &', By substituting here A, Ajy,
Xijiar, Mr, Pir. Uy from eqs. (7), we see that this quantity is identically equal to

) i 27 - 27
Xa = Aa + }‘imé” + Ai.iguéuﬁm + Ha ({;2 + E) + ﬂilafn (éz + E) +
Vv

4T T
+g (&4 +—= 59) +2va——

oL, This fact confirms that y is a scalar.
Another useful consequence of (7) is

a9 A A A Aijis
: = Air , %_lr = 2 Xigir + 205 pir, “: - = 261{11 Higyr
vk vl vk (10)
A iy = i B piyr 45 v vy —0 d vy —0
dut T T Gt Toauk
Similarly, a consequence of (8) is

a9 A A O Aijia

a_‘{;= _)\-1‘:&5 Wi:_ﬂ: _2}11'.'1'0. - 25’5;{]#‘&3 ﬁ == _2{51'&' #@2}&?

B,uT 8,uT e iﬁ",uﬁT (11)
9 e i, =8 4f Yy, —2 =0, 22 =

a vl Fia. gl T gt R R 1

Up to now, we have not imposed the Gailean relativity principle. One of the constraints
of this principle is the following one: Let us think of A" as a function of Aq, Aijr, Aijiar,
By Migps Vpy iy if we substitute here (7), it becomes a function of Az, Aija. Aijizas
fas Hijas Va, fve and of v2. Well, the principle states that this new function must not

A !
depend on v;. In other words, we must have gi_‘i = 0, because

—+oa o0 - ;o=
=f/ f —kp fIn fo@F)w(TV)aI"dI  dE . B =—h+AsF1,
R3J0 0

(where kg is the Boltzmann constant) and Ay I 4 is independent on the reference frame,
as it can be seen from (6)1 ¢ and (8). By using (11), this condition becomes
ah' ahn' an' an' an'

— A A ] 2 — — i 4
AN + 2 '5')\1'4 ( igi T 111#} + B hita = HMiy + o1 i + G

v=1>0, (12)

where we have omitted the suffix a because we aim to find conditions in the absolute
reference frame.
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Another constraint of the Galilean relativity principle is that hf — h"t‘fjr mst not depend
8 (hg—h'vi)
duvl

o + o0 ) R P . ) )
~ [ kesmree@tuayazhar il | w = nt e FA,
R 0
from which it follows

Feo T . . . B s . .
W= [ /0 fD kg f I f (€ - o)) + of] p@R) p@¥)dTRATY & = hi+ hot,
W — Bl = — bl g Ay (F — FAL) |

on v, ie., = 0, because

and Ay (F M _ pA vl) is independent on the reference frame, as it can be seen from
(6) and (8). . By using (11), this other condition becomes

i .I'I -l"i‘. -"'.!-
(13)
We can now see that for every b’ and k" satisfying (5), (12), (13), all the other conditions
(6) are satisfied, while the conditions (5) are independent from the reference frame.

e Let us begin with egs. (6);_7. We have
an' - ah' 0 My * ah'
AAa  OAge OXy 0N

where in the passage denoted with = we have used (7). Similarly,

= A'[]‘F‘:

Aga =

where in the passage denoted with = we have used (7). Similarly,

L oW O B)s . ON ahn : .
Al = i vit + = Aguit + Al
%9 G Na 0w O O T Bhgy ot T o
Al an OW Ddar o+ OW iy BN sy DN _

a}‘higﬂ - a}‘:ﬂ.r B)‘dliga BA:" it BAJNT‘ b o a)\hi‘:r
_AD,UBI 1.2+2A{111,w]+ AHIQ

4 _ QW _ OW 8dar . OK 5 8N OK
T B Oy pa 0N T AN, T A,
= Ap v2 +2A0 v + Arr.
0K O Ohar . OW 5. . ON oL o), 0N
ST T s Vo s W -y e (2osrett +0263) + %ngm Tyt
an' an'
+B,u “—I—a o = Ap vl 'u A (21'_;11-1" —I—'UQ-:‘:”) Amc’ Tm —|— Appuit + Alﬂr
O _ O dha » OW 4 O , N o _
Aa. = A -1 el FYR T Z " an
2 5!41 5ar Ova a}‘r +a}\j|!" Uyt + B 7ar lT_Fle}E"'a#r v+
ok’ oR i
+m4v«;—j, +8—_ ADU + A 4vm-b + Ap, " dvrj ey + Al.-,.-ZL —I—A rdurg, + Ao,
OH AW Bda . ON ;
ot = = = Hy:
Ve aﬂ-‘f’a dAar dpva A pyr vr
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e Let us now prove that (5); is independent from the reference frame. We have

o o PN Oy . 0N 02
: : P Mo S —
Y S VAl > V) Ve Y R 5 W > VARE LD v > W L)
! 2 ! 2 ! ! ..
o2 h 5 h (L PH LW

e S PO
0 Ajjza O Mia Haza aﬂ'aatx{a#ja A i jq O Aig

where in the passage denoted with = we have used (11) and in that denoted with = we
have used the derivative of eq. (12) with respect to A;;. Similarly, we have

8 Ohi  0*hl  OXaa « O°HI 8% ht
i Ohg  BAgadA, ol 0N Asa = BAMBA (Mija + 9j1j Ha) =
8% hlt & Bl & bl s OR

D0 2 T paana e T g e = a0

where in the passage denoted with = we have used (11) and in that denoted with = we
have used the derivative of eq. (13) with respect to A;. Consequently, we have

0 (oW _om\ .
g \0rw 0N

This proves that (5); doesn’t depend on 1.13;7 i.e., doesn’t depend on the reference frame.

e Let us now prove that (5)2 is independent from the reference frame. We have

o on P 0Ma « *n o n O + 65 ) —
a T_.‘:ir; a )tiilu 0 Aa 0 )‘Lulu i, ?J:r 5‘ Aa B)\iim " 6'}\.;,-,@ B)&ﬁm Ja Jua
0% h' i a2 h' w_ OR
Mg — — e — 4 Vg =2 &
VYD Wt TTID W LTI D A D W 0
where in the passage denoted with = we have used (11) and in that denoted with = we
have used the derivative of eq. (12) with respect to A; .. Similarly, we have
8 ahl 2hl  OAag . O°R] a* hl
; L — Ao — 25— (Ajuja + GirjiMa) —
31‘:;.—’ 83\:'13 3}\133/&1111 5‘1‘ alaa)ﬂ]a aljlaa}\'ila
&2 hi &2 hli 0% hlt s ant dn' Bh’
7 2Hisa — 53—y Hia Va = dij + ¢ = &
a }\.jjgg a /“\i]a 3#& BA“Q Bﬂja BA@lg 3 )la_ aAflg a )"-Ill:i-

(14)

where in the passage denoted with = we have used (11), in that denoted with = we
have used the derivative of eq. (13) with respect to A;;; and in the last passage we have
used (5)1. Consequently, we have

9 ( L ) i
al’; a/\ihﬂ B}‘ﬂﬂ, -
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This proves that (5)s doesn’t depend on the reference frame.
It is interesting to see that from (14) it follows

a ok

vl 0 Nijja

that is, also (5)4 doesn’t depend on the reference frame.
e Let us now prove that (5)3 is independent from the reference frame. We have

1

a on 02h' OAaq « 92 h O h
; = =~ (Ajija + 8jyjba) —
3-1,-‘5?- 5'#-m A Aa Oiia 6 ‘f_'j 8 Aa O ftia A Nja @ plia
an ah a*h v . ON ahn'
—zﬂ'jzﬂ, - —Ju';r'a - 4—”51 =2 i
& Ajiaa O Lia a pia O plia O pija O Hia 0Mjia  Opa

where in the passage denoted with = we have used (11) and in that denoted with £ we
have used the derivative of eq. (12) with respect to pig. Similarly, we have

a ant O?hT Odaa a2 hit 02 hli
5 A= - -“ = — “— Mo — 2575 (Mjija + i Ha) —
B'L»,— aﬂu a)\da aﬂ'a BLT a)\uaﬂu a}‘jmaﬂ'a
a2 hlt H2 hft a2 hli - ah’* an . ah' an
v o “HMpa — 5 Hja — 4 Vq = +—d'j= = t e
a)‘jjgﬂ,aﬂ'ﬂ, aﬂ'g Blujﬂ,ajuﬂ 8)\ aju'a a}"jiﬂ, aﬂu !

where in the passage denoted with = we have used (11), in that denoted with = we
have used the derivative of eq. (13) with respect to p, and in the last passage we have

used (5)a. Consequently, we have

9 (am &hg‘)_o
Bvi aﬂ-m a#‘u -

This proves that (5)3 doesn’t depend on the reference frame.

e Let us prove now eq. (6)s. We have

8 A 0 o &% nlt a;\m . a% \ (15)
81;;" B ﬂ't‘ui-i a}‘niga a}‘iﬂ-a‘}"’ilwﬂ ﬂ B a)‘aa}‘uzm "
& hjl 0% ! & hjl
2— @ (Mg + biift ——2 —— % lia—
8 Xjra @ Miiza Nije + Oitta) = 5 Nigza @ Niima 2T Dptg Ohigiaa
&2 hlt « . OB an’ si_g 00 ah 5-_;, —335”2 5?_.

4——2  p,=2__L 4 i
aﬂjgaﬁgigzg 3}" |: ) aj\ﬂ%[l"& ! a)\ﬂ.iiig

where in the passage denoted with = we have used (11), in that denoted w ith = we
have used the derivative of eq. (13) with respect to Agi,i, and in the subsequent passage

we have used (5)9. By applying (6)3 we obtain

a A (ria 57 (i1 ia £i) i) _
BD;} =3 A58 + 6 A5 025 + 3 AgutvR 4
U

5.5'1} (SA{IHQ ?J""J +3AI[31_L.13_.1} + Ag, ’U“bm ,UI) ]
(h
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By integrating we obtain
Alivz _ ot g g0 g0 g gl ) 4 g0 gty gl |

where €12 js the tensor constant, with respect to v arising from the integration.
So we can calculate the above equation in 17 = 0 and obtain Af!™ = C¥1%2 because

(A‘DL”E) g = Ag™. By substituting this value of C1%2 in the above expresion, we
vi=

obtain (6)s

It is interesting to see that from (15) it follows

5 On"
81'3 aA

11]%41
that is, also (5)5 doesn't depend on the reference frame.

e Let us prove now eq. (6)g. We have

0Ay, 8 ohj ki e . _OPhE (16)
auﬁ T vl Ofira  OAaOfiia dvd OXg O ptija "
? ! ] 92 i 92 Rl
2 8 (N i) — —m % 2y — —— O g
3 Ajra O fiira (Airja + 851 Ha) 3 Niyan @ Hiina Hjza aﬂ_ﬂaﬂ_t_m#m
a? bt o . ORY Sh“ an'
_ Y,y a a ‘u 5_ _ QAHIJ + 244{11
0 pja O isa ’ & Aajiy 8 Ha B#-a:‘.

where in the passage denoted with = we have used (11), in that denoted with = we
have used the derivative of eq. (13) with respect to p;,,. By applying (6)5 » we obtain

pAT 3

B B (2 Alpit) 42 Ay, 4 4A iy, ¢ A2 42 AF vite24
vr vl

+ 2 Agr Uhr 'Ui-l 1’71' + Apr 1'3— U;;'l 1'1;;' + Ajr 'U;-l b".:lt') :
By integrating we obtain

%11 _ (it + 2;4.{1 1‘“J +2A1h111'h1- +4Ag£i_ ,I'lJth +AE;!U2 +,2A{1'_,:'1]|_ .3_+
12 AR vl 4 AgrvZoltel + Aol

where %! is the tensor constant, with respect to vl arising from the integration.
So we can calculate the above equation in v3 = 0 and obtain A} = €' because

(A”') 0T = A, By substituting this value of C™! in the above expresion, we obtain
6.
It is interesting to see that from (16) it follows
LS
éhti O piyja T

that is, also (5)g doesn’t depend on the reference frame.
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o Let us prove now eq. (6);p. We have

gAL, @ ORI hl 9dae . Oh

5-1::’} B BU{.F- Ova aAdaaVa 31‘j B 0 Ao Ova
a2 ph 52 pi g2 i
p R S i W o) — — 4 9y O
5A_ii1413bfﬂ [ Gija T Qi nua.) aﬁjjgaa”u Hioa B fta OVa Hia
2o " I
TR L LAy SRV

a2 Va = g  Ovg

where in the passage denoted with = we have used (11), in that denoted with = we
have used the derivative of eq. (13) with respect to v,. By applying (6)gs we obtain

a As, i
vl "9 vl
vl (Agr- + 4AR vpr 4+ 24102 + AR v v + 4AR w02 + Agrvi)] .

|:4Alr'1h'.r + Eﬂirl!g + 4-"!‘5:"& Uhr Ukr + 4*'4‘5?'1]?11'1'12' + -"'4‘El"r‘1"".l‘E +

By integrating we obtain
= " + aA o, + 247 02 + AATF v v + 4AT 02 + AR +
,l,. (Agr + 4A1r'vhfr + 2..'511?-'1:3 + 4..40,. Vhr Vier + 444{]1-1'!17'”7- + Agrl?T) \

where € is the tensor constant, with respect to vl arising from the integration. So we
can calculate the above equation in v2 = 0 and obtain Az}r = (" because {Aqﬂ)b_, 0=

by. By substituting this value of " in the above expresion, we obtain (6)1p.

e Let us prove now eq. (6)11. We have

oHY  a oh Phg Mo »  Phy
avﬁ} BU'-,.?; a#‘i"a Sldaaﬂla 51“1 a)\ aﬂl'a o
82 Bl 82hi 8% hl!
? a}‘ha 5#.1,_11 {)\Jl:ﬂl + "SJU }'—"41} - a)‘jjga B#‘Vu 2#‘)941 ‘9—#41 ﬁb‘ﬂ Hja —
2 LM !
Phy |, w oMy o
Bvaﬁﬂ"r’ﬂ. 5#‘&"&. J

where in the passage denoted with = we have used (11), in that denoted with = we
have used the derivative of eq. (13) with respect to 1,. So we have obtained

oHY 8 (ah; ?-,) a (ah’ ?-,) 8 .
& — _ | = — n HE i) .
avi 0w \opve ") " Bl \Opvr 7 aw( ret)

By integrating we obtain

i i i i
HE —c' + HE

where €7 is the tensor constant, with respect to vl arising from the integration. So we
can calculate the above equation in 1@ = 0 and obtain Hy; ““ = ("

bhecanse (H {{fl wip = = Hy ‘” . By substituting this value of C‘ in the above expresion, we
obtain (6)11.
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The Galilean Relativity Principle for a 16 Moments Model in Classical E.T. of Polyatomic Gases

2.1 An historical and useful change of variables

Starting from the independent variables Ao, A}, A7, A1, A}, Aa, H¥, it is useful to
define Aor, v', Agy, A1r, AYy, Aoy, HiY; from the relations

Ap = Aor, A% = Agrv’, AEJ = A:'ﬂr + Agpv'e? |

Ay = Agp + A,

Al = AL+ Aot + 2480, + A0 + Agp®t, (17)
Ag = Aoy + 1AM + 241 10% + 44 v + Appr?
ot = HY,

Here v' is the velocity of the fluid. Formally this system can be obtained from eqs. (6)
omitting the suffix "a”, replacing the suffix "r” with I, replacing v{ with v and putting
o = 0. A similar transformation is considered from the dependent variables Aj'*,

AT, AL to AR, AT}, AL, according to the law

AEH'E.Q _ 'UiAE”Q Aﬂﬂ.z + ‘2_{41{11 h:l

AP — VAT = AT + Al + ZA”‘“?Jh + 24k v v + Agt?,

L —vldy = AL + 4A1;1‘h + 4Am VhU + 4Aa‘r}vhvg .
Hff-{ o H” HzH

(18)

Since the above considerations don’t depend on the physical menaning of v%, they hold
also with the new wvariables. In particular, we have that the independent variables
Aor. Ay, Avg, Ay, Ay, HYy and the dependent variables Ajf*2, Ay}, Ab;, H{; don’
t depend on the reference frame, while only for v* we have that v; = v, + vr. This
means that Ay}, AJ}, 9;, Hi! are functions only of Aoy, AE} Aqr. Ai;, Ag; Hw
. They don’ t depend on v'. After that, the dependence of AJ*2 Ay, AL, H{¥ on
the velocity v' is simply dictated by eqs. (18). So the pmhlem of ﬁndmg the closure
is a little simplified. Now the problem is how to express this situation in terms of the
Lagrange multipliers. In any case, also with the previous variables, we had to find the
Lagramge multipiers in terms of Ag, Aj, AE, Ay, A}, As, H{f-f (which we now call
simply F ”1] inverting the relations F A_F “1(}. g) and, after that, to substitute them in
Fz—i Fi A ( A B}

So nothing changes if we consider the expressions (17) for F and the expressions (18)
for F*4. More than that, if we want to find only the expressions of AR ATE AL it
suffices to calculate (17) a:nd (18) in v* = 0. This means that we have to calculate the
Lagrange multipliers from the relations

ah' ah' - ah' an' . ah' an' ah'
Agp=——,0=—— A2 — 4 — AN = Ay =—, H{ = :
TN T N Y T AN Y T B Y T B, T T e Y T By
(19)
After that, we have to substitute them in
y ah't " On'} - On't - ah'
Agr=_—L Afi=_—L Ay =1L gt =_—L, 20
O = A T B, M T Ty VT (20)

More particulars for this procedure can be found in the article by Pennisi and Ruggeri
[11]. To find the explicit closure of (1) both at equilibrium that in the first deviation
from equilibrium some integrals are necessary; | report them in the next section.
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The Galilean Relativity Principle for a 16 Moments Model in Classical E.T. of Polyatomic Gases

I11. Some Integrals Necessary To Close The System
The following tensors are expressed in terms of

—1 = A IR+IL L{)Q
f=¢e ¥ "'e kBT g !E T

and are necessary to find the closure of the field equations (1):
o0 +o0 ; L.
ag=m [ [ [ poatea’)artar’ i,
R JO 0
i e +eo i By vV R Vv 4=
AE}:E:mAaf f FET@TT)Y(I)dI™dI" d§ =0,
- o0 00
AE?E: — f f f &n &iz o IH] LJ(I‘ deH di—l dé
+oc +oo
Aup = /af f f (&Q + ) (T p(TV)dTRdT" dE, (21)
R Jo 0
oo +o0
Alrg =mf f f f (&Q ) ¢ oIy (@)Y dTRdTV dE =0,
R S0 0
oo +oo ) L
Agrp =m /3f f f (&1 + = ﬁz) ()T )dIRdTV df |
R Jo 0

+00 +:=¢ ) oL
mw=2 [ [ [ eaheat)artar i,

+oa +oa
/ f f '!.‘E?.] éh »,G'{IRJ U{I‘ }dIH dlﬂr {]:é 0,
0 0
+oo oo
L7 (8 + B eeroatvatyartarae.
R340 1]

_ +oo  ptoo
Ay =m f / f f
) w3 Jo

o f ) FETV (IR P(IV)dIRdTV d€ =0
0

(22)
&*+—a) oI YTV ) dTRdTV d€ =0,

=
d

=
?:=
Il
S
a
1‘:7_""-;

g [ [ [T g g n o1 y@¥) az? T o,
iyinj R —1—-XE iy pin g3 27 Ry eV R r g5
B2l — e I gghg (@4 22 ) @) pEY)dTRAT dE =0
3 1]
+-I- ~+oo . -
BII%Q mf f / _1 }El’f- &‘i-l cia (&4 _’__&3) W(Iﬁjwtjl)djﬂ dIlld-;E._
R
teo pteo
B‘i“?_mf f / Te gin gin 22 Ry (1Y) aTR AT i
+o0 +o0 _1 . 2:1’ R v R .
Bf_mf f f EEXE i (a +—) (TR W(ITV ) ATR AT dE =0,
Pl

Bi=m fw / - / e (& +%) eI Y(ITV)dITRd T dE,

%
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The Galilean Relativity Principle for a 16 Moments Model in Classical E.T. of Polyatomic Gases

B] = mf frm/m TR XE g (e +—) O(TRYyY(TV)dIRdTI dE =0,
R

B=m [ fmfm N (é o) (&‘+£&2) (T Y(T¥) dTRa T i

o o0 +oc - m 2 121’) 2:1’ o 1 v R
B”,_mfmfn fD e (g — (T Y(T")dT dT? dE,

y too pteo o 27 2 . -
By = 1 g J(E _) (I W(IY)dI"dI" dE,

gom [ [ ¢ (e+22) pahua) 3

Bi=m [ fmfm A (¢4 _) (¢4 L&) wia™y ") aztaz dg =o.

+oo ptoo 21’1 R P
r)CE i 2 R ah ¥ R V —

B:,—mff f 3 ( ) (T YT )dIT"dT" dE =0
+oo ptoo .

L _— - B)(E R W R

By m//; /; e ¥ ( ) O(T® YTV )dTR AT dE,

o too ptoc A AT )23'1 Ry 7V " v
Boy —mf fD j.;.. e (g — &) — (@™ w(I")dTdI dg

PO e (20N p v op oy e
B:sv'ijg;sﬁ ﬁ e (Z) p@hyp(Y)aThat’ &,

oo ptoo

iiyisjia _ —1= R XE gi giy gia gt ¢32 L TRY s TVY ATR 370 JE —
B mfmfo fD e gigh gia gt g p(TR) $(TV ) dTR AT df = 0
iigigj e e —1=FEXE 4 it gin ¢f ( 2 E) Ry o7V R grv a8
B, —mfﬂsfo fD gy (@4 2 o) g azt a1 i,
- too ptoe | m S 47T - -
piitiz _ 1= PEXE gi it pia (4 = 9) AT TV dTRdT de = 0.
froem [ [ [ e Eedae (¢ e ) patuat) i =0,
o +oa too . o o 23—‘;’ R .
piitiz _ rpxEgigngn 22 Ry g1V dIR ATV dE =0

peem [ [ [ gleh e = oI (") dé

o0 oo m 2 i -
B —m [ f f e E g (a2+§) P(TF) p(@) dTR AT & =
too ptoo 27 4T - -

_ lmggxm gigg (g2 22 (et 3 o) LBy TV d TR 470
Bl =m [ [T sa(um)(m &) P ") dTh T
By, =’mf f mf et gg (& +—) (TN w(@")dTdTV dE,

3}3
Bi=m [ [ - / g (e* “Isﬂ)d@(Iﬂ}u':(f‘f’adzﬂf:m{=ne
+oo ptoo v

By =m [ [ [T A (¢4 2 e) 2ot vty aztart -

. too Ao g m 2TV 2 B Foo
B;T,.-:mf / f e FENE( (—) @) p(TV)dI"dIV dE =0,
= Jo 0 m

where we have already put equal to zero the integrals with an odd number of £ because
this property comes out from the representation theorems.
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S0 we need to find the expressions of the remaining inteprals. Their calculations have
in common some aspects that can be summarized in

] - .'3+15
- s? 95, 1 2kpT 1 _
fu e TFBT " g°9dg = 2 ( - '3+ 3

G+% I
_ 1 (ZRBT) 1 26+ 1) JT,

m 25 23 +1

b2 |

+00 R +od v

Ap(T) dﬁ'/n. e FT o(IR)dTR,  Ay(T) ‘*"’:’"fn e Tt p(zV)d1v,
+o0 _ 1R 8 Ap(T

Be(r) e [ AT L ot ar” = ke
0

too gV i ) ) )
By ™ [ e BT wa)azY — ket SO
0 a1
+ o R E
Cr(T) dc:f'/ ¢ FpT (Iﬁ)l o(TR)dTR — kpT? 9 Bg(T') ,
0 aT
oo LV _ _ ;
v de:f'f e T (1Y) w(@")az¥ = ker? 220D
0
gL B2 L1 0 ey, e BAD L1 2y a1

Ap(T) kg ar Ay(T) kgT ~ ~ 8T
)

k
o def CR(T) (1 )? o a
Yr(T) = An(D) (k:H_T) (Tﬁ 111AR(T]) (Tﬁ 1118]{(’1—']) ,
9

w(T) g:g:)' ( k;T) - (T% lnAv(T)) (T% lan,«-(T}) .

(23)
In the first one of these 3 is an arbitrary integer number, I' is the Gamma function and

the integration is performed with the substitution s = 4/ Enf-ji x; finally, in the last
passage, we have used a property of the Gamma function.

Thanks to these preliminary aspects, we can calculate the above integrals and the
results are:

3
m 1

2 k}gTﬂ') Ar(T)Av(T)’

Aug def p and can be obtained from e VEgME _ P (
m

Afp=pdY  withp = p%

D3 0 _
Ap = 2pe mthE—J—O{ +T3Tln(AR(TjA:;(Tj)}._

Aot =3p (%)-} {5 + 4T In (AR(T) A )} ..

Hi,, _sz_ 111(,4‘, T))

™=

S a
L N y— — -
A — 95 with o ( ) {5 +2T 5= n (AR(TIIA;, (T})} ,
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i
Bitiziige _ 3p (E) d'l{ili’_‘&jlj'}:l )
Fil
By™ =y 61 | with

3
e () [+ (o).

2
B2 =y 512 with e =2p G) ( T% lnAp-(T}) ,

p‘l
By = = .
= (4)

- [15 12T 22 (AR(T) Av(T) ) + 4 (w(T) + ya(T) + 2y (T)8(T) )} |

3
P
By=3p (=] -
: p(p)

: {35 +307 —— In (AR(T) Av(T) ) +8 (w(T) + v(T) + 2 Bv (T)Br(T) )} ._

S

2
By =p (%) (4ﬁ,—(T) + 63, (T) + 48p(T) .SE"(T})

3
B;J = 1y lfij . with g = p (g) .

- [35 +207 2 (AR(T) Av(T) ) +4 (7w(T) +7a(T) + 2By (T)Ba(T) )] f

4
p

By =15 (—) .
v

: {53 +56T % n (AR(T) Av(T) ) +16 (3w (T) +YR(T) + 2 By (T)Br(T) )} ,

Boy =6 p (E)g {5? % In (AV{T) ) +4 (".f'v(T]I + By (T)Br(T) )} :

2
By =4p (g) w(T),

B;lf"_‘.'.fjh — 1y §{i1i25j1j2} . with

3
iy =3p (%) [T + ET% In (r’nﬁ:[TJ Ay(T) )} ’
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4
B:f =ysd9 , with ¥5=>5p (%) .

| [sa + 027 2t (Ap(D) Av(1) ) +8 (w(T) +7p(T) + 2 6y (T)Br(T) )] f

B;j,- == 1 a4 with
3
Vo —2p (E) [ﬂ% in (Ay(1) ) +2 ( (T) + By (T)Ba(D) )} |

The others can be calculated in a similar way:
e Let us begin with Agg.

For integrating in d 5 we can use the spherical coordinates él = s sinf cosy, !52 =
s sinfl sing, £ = s cosf, with @ € [0, 7], ¢ €[0, 27[, s € [0, +oc[, whose Jacobian
is J = 5% sin#.

After that, we have

e +oo m b ] +oo _i
ADE:p:‘i?TTHE_I_EM (f e_2kBT532ds) (/ e ksTcp(IH}dIR)
0 0
(24)

3
71

+ o - IV . . 1 m -
(/ e BT (I" }df‘) — darme | GAI% (QKBT) 5 VT AR(T)Av(T),
0

m

from which the above written expression follows.

e Let us proceed with Aéﬂ, o

From the Representation Theorems, we have AEJ} = P08 whose trace is

+oo ptoo
3p= 2 oI (TVVdTR ATV dE =
pm/ﬁgﬁ ﬁ e (T w(Tv) dé

1y too  m o oo 7R
=4mme kB (/ e TRpT s"ds) (f e "BTH?(IR]EEIR)
0 0

+oo _ Iv - - 1 __m " %
(f e FBT (T ]dl") —4rme | M % (2?:?‘) %\EAH(TJAV(T) .
0

which can be divided by (24) and gives p=p iﬁ; as reported above.
e Let us proceed with H{f— 1E-

v
It is similar to Age but there is the further factor % So we obtain

q_m 2kpT
H{EIE‘=4HEI *BJ”( Ti

) : % VT ARr(T)Bv(T),

which can be divided by (24) and gives

2 By kpT i
Whe = 37 =2 T 7 mAv(T),

i.e., the above reported expression.
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e Let us proceed with Ay g,

It can be rewritten as Ay jp = 3p + H{:[-”g +Hf&izr5: where Hﬁ-f.m is similar to H{!—IE but
with I instead of V. So we can say that

Auyp=3p + EPT% mAy(T) +2pT % In Ap(T),
i.e., the above reported expression.
e Let us proceed with Aapp.
We have

. R R T e A Ry R
Agyyp =4mme B e kg §'ds e BT p(I™)dl
0 0
+oo gV N ; l_m T m 2
(f e Wg.s(z‘mf‘f)ﬂem Fg M U e TFgT SMS)
0 0
too IR oo _ IV . .
(f e krsTIRp(IR}dIH) (] e karg..-(z"mz")+
0 0

1om to  _m_ g2 1 oo I R R
+ 16Te kg fu e BT 5'ds fD e BT o(I™MdT

Foo _ IV . . _m 1 (2kpT\? 15
(f e WT‘:_.&[I‘)dI‘) —arme ' Fs M [—( 5 ) < VA AR(T)Av(T)+
0

2 T

]

5
41 (2kpTH23 ) )
+ o ( - ) 1 ﬁ{ﬂﬂﬂv + Bv Ag)

which can be divided by (24) and gives

Agg (ksT)g [ 12 (BR By )}
= 154+ —— (2 4+ -2,
p m kT \Ar = Av

from which the above reported expression follows.

e Let us proceed with Atﬁrg.

From the Representation Theorems, we have A} = ¥ 67 whose trace is

. - * s 27 D Ry gV R 4V 7
A(TR) TV ) TR ATV dE.
3 m./m&‘/i; ]4; f(é N )é LT ~

m

This is similar to Asjp except that we have now the factor % instead of Lﬂf S0 we

have
Uy kT . 6 Brp By
33—(?) P T A T A )]

from which the above reported expression follows.

e Let us proceed with Bf1%2i2,
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From the Representation Theorems, we have Biti271d2 — p §liti2 §7132) whese double trace

is
g t00 . o teo R
5b=4mme F"E (/ e TFpT ssds) (/ e FB? .',;*(IH}:{IR)
0 0

—+oo v . X il
(L E_kI?T-E'J[I“'}dI‘") —damme rh” 5 (QkHT)Q — T AgAy ,

m

2
which can be divided by (24) and gives b = 3 p (%) from which the above reported

expression follows.

e Similarly, Bi'm”” 1y 412 §I12)

whose double trace is

- —1- ME e —rmr st 8 T R
Sy =4mme  FBTT [(f e kR 5 ds) (f € t,-:JI )
0 0
too gV A 9 too a3 +00
(f emg..-(z")dz)Jr—(f e TRET ssds)(/ eFTIR IH}dI)
0 m A\ Jo 0
Foo gV . 2 Foo 4 9 +oo
(/ e Wﬁu(z‘;dz) + = (f e ThgT* sﬁds) (/ IH}EEIH>
0 m A\ Jo 0
40 v
(f e T IV LJ(T‘}dI)}
0
9
- —1-{5 A 2kpgT\1 2 Bg By
e g (B) v [ o (e a0)]

which can be divided by (24) and gives

L kg T 4 2 Br By
w2 (55) [ er (B 2))

from which the above reported expression follows.

e By proceeding in this way, we have B3 = 9y 4112 whose trace is

e A oo __m SQ oo . IH
3y =4mme  F8E Kf e ZkgT sads) (f e WT(;:(IRJUIIR)—F
0 1]

too gV B B 4 teo __m a2 e pa
(/ e FaT (I" ]a’.T’) + — (/ g kT SGd.S) (/ e T IR IR}EIIR)
0 m \Jo 0
oo 1V . . 4 Toe __m g2 oo
(/ e kHT-r,."J[I“)dII‘) + — (/ e 2kpT sﬂds) (/ e kHT o(T”ydT? )
0 m \Jo 0
‘oo gV S
(f e FeT (T’ )I" dT" )] =
0

—Amme | FpME '}'+i %-I-B‘ EkHT v”_AHAi,

which can be divided by (24) and gives

. _ kpT 4 + Br By
iy — T+ —— [ =222,
. Dp( m ) { * knl (AH +Av '
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from which the above reported expression follows.
e Let us consider now By = 1 6%,

We can repeat the same passages done for AE;} ;; baying attention to the fact that now
v :
there is the extra factor 2 % So we obtain

2k T

3o =8me l__)” (
2 m

) 3 SR ART)By(T).
2
which can be divided by (24) and gives vn = 2p (%) A from which it folows the

expression reported above,

e Let us consider now Byy = By + Bayy + Bapy where

+oo  poo XE EQIV B v " -
By —m/ / f “Ts E—— Ty YT )dIT"dT" dE,
Ra T
+o0 pdoo
By = m/ f f TR (V) (@) p(TV)dTR AT dE,
33

o0 +o .
Baiy = mf f / TEE TRV (TR W(TV)d TR ATV dE

The first one of these scalars is similar to AD[ i but there is the extra factor 2 . So
we desume that

8 g ] (?kf;T
Biiv=—mme
m ?. 1

) — T AR(T)By(T),

9
which can be divided by (24) and gives Byivy =6p (%) Gy

The second one of these scalars is similar to Aggp but there is the extra factor (2 %) .
So we desume that

2 2
A-moap 1 (2kpT\T 1 ip Cy
B ,_( B ) EﬁAR{TJC:;'{T]=—‘g_L=4p(E) W

B
21V 2 - o r

EIE

TV
The third scalar is similar to Agg but there is the extra factor 4 I_ml;_ So we desume
that

R L NS B V| 2kgT 4p Br By B
Byly = —we ~ FB 2( v’_BH By (T') = m2 Ap Ay

2
P

—4p =) BBy,
p(p).ﬁ.‘f
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e Let us consider now By

We note that BY = Bij + B "ij with
B = f / ST G(T)dEAT = by 5,
T 3

whose trace is

-4 —1-=ArE e m s 4 e H R R
3!3.1=E4:r:me L) e TFBT g ds e 7‘?7' (%) ﬂ{I ydT
0 0
too gV . . +o0
(f e mﬁ-‘(fvjdfv)-l-(f e m )
] 0
too IV o9 ,- I oo TR
U EET{I")‘;&[T'MT‘)+2(/ e BTIRy )
0 0
T2 v ; ; ;
(f e *8T IV p(TV)dIV )} =
0

5

m . * e i

—4mme TR ME Zi (ERBT) VT (CprAy + ApCy + 2By By),
m m

which can be divided by (24) and gives
kpT 3 1 2 Cr Oy Br By
"‘”““’(?) (FCH—T) An Ay AR AV )
By using this result, we have BY = (¥ + ba) 6 = 1387 with
ke T 20 (Br , Bv
= by = /e —— (=4 =~
Ya=11 + b= p(m) [ +kBT(r’=H+AV +
9
1 N\ f C Cy B ;
s ) (SR 4G g Br DY
kT Ap Ay Ap Ay

from which the above reported expression follows.

e Let us consider now Bjj = 15 6.
It can be written as B4 = B + 334 + B + B + B;.:i + Bgi with

+oo ptoo e ) -
“‘m/ / / TR I S QT (@) d I T d,

mff+°°f+°° gt
.

+00  ptoo
— EXE i g 4‘53 Ry 7V 3R
31—m[wf f g8 et B o7z ) dTR AT i,

(V) dT?d T dE,

2

+oo oo R X .
B—sm [ [ [T et Eedoe () watvatyartar e,

WWWw.irjes.com 19 | Page



The Galilean Relativity Principle for a 16 Moments Model in Classical E.T. of Polyatomic Gases

. too ptoe om o rgVA2 . -
B;{i=8m/ f / e FpE glel g2 (_) (T TV dTRd T de,
R Jo 0 m

) o0 R 7V
—lﬁmf /+ /+ 17 EENE gi g g2 (I I;H) O(TTY (I )dIRdT" dE .

m

The first of them has the form By = by 6% whose trace is

1 A +00 o ™ 32 +oo _i
by —4mme = FuTE (f e ZkpT smds) (/ e "BT@(IH}EEIR)
0 0
+o0 v 4
(/ . ﬁ;:(f‘)df‘):gup(f) f
1] Iy
where eq. (24) has been used.

The second of them has the form BY, = bay 6" whose trace is

1 Y o0 o m SE —+o0 IR
by — dmme | R E (/ e ZFBT gsds) (/ e BT TR [IRdeR)
0 0

([ Ansar)
— e BT (I )dT =Tl
m(/ﬂ vy 1¢

where eq. (24) has been used.

The third of them is similar to the second, with TV instead of T%; so it has the form

(=1
R
.
(=]
2
=

4
p 6 DBy
3hyy=Tp (2) 22V
i p(p) keT Ay

The fourth of them has the form By, = by 87 whose trace is

™m too m 3 +o0 IR 2
3by =4wme | FEME (f e TEpT® sﬁds) (f e 8T (IH) %‘(IRJCEIR)
0 0

8 too gV N 8 g
= e F5T (T d:f‘f) — 5! (—) tr
= (f < “0\) aTy Ar

where eq. (24) has been used. _
The fifth of them is similar to the fourth, with T instead of Z%; so it has the form

B-4 = bey 69 with
4
il 8 Cy
3by = 5l = —s—
54 ° (p) {kgT}Q Ay

The last of them has the form B& = bgy 87 whose trace is

—1-= AE e m g2 e rTIR R TR R
Abgy =4mme  FB (/ e ZERT W g ds) (/ e I p(I™)dT )
0 0

16 ([ v V) (;;)4 16 Bgp By
— e FET IV p(IV)ydIV ) =5lp (=
9 Uo V) av (kpT)? Ap Ay’
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where eq. (24) has been used.
So we have found that ¢ = by + bay + bay + byy + bey + by, ie.,

1
) P 42 Bpg 42 By 3 Cr
Y5 =5 (—) [53 Ky = - R

P\ kgT Ag ~ kgT Ay ' (kgT)? Ar

e 2
(kg T)> Av  (kT)*> Ar Av ]’

which gives the above reported expression.

o Let us consider now By = Asrg + Biis + Bai. + Bag. with

+eo o0 . ) B
Bits = — f / / eIk (T%)? o(T®) (T ) d TR dT" dE =
4 —1- g 22 Q o0 A 0
— —are T (/ e TEET ds) (/ e FBT (T ) x,,(l’}df)
m a ;
3
o0 _ TV i m ) E 5 9
(/ e *BT (T) df) = i;r..'e 1=y ME (M)z VTCR Ay =4p (LBT) .
0 m M m

o o 8 o ~ R .
BmFif/ / e TR (1Y) p@P) (@Y )dTR AT dE,
m Jwms Jo [

which is similar to the previous one, with TV instead of T#; so it is

kp T2
BQI«=4P( f;q ) Wi

8 e e RV TR Vo g TR pTu a8
By — — / / e 175G IRV o(TR) (TV ) dTR dT" dE =
m Jg3 Jo 0

_q{_ m . +oo __m a +oo IH
:%4“ 1=gg MiE (/ e TRRT S s?ds) (f ¢ T IR (I)di’)
0 0

oo — IL r r e
(/ﬂ e FT IV y '.-‘(I"]df') =%?re bt (EET) VT Bp By =

kpT\?
8p (%) Br By,

where eq. (24) has been used. So we have found the above reported expression.

o Let us consider now Bo = Bio + Bas + Bas + By + Bro + Bgo with

‘oo pteo o i -
B“:mfm/u /u e FE B TRy (1Y) TR ATV dE

ng—sfﬁafﬂfrm TEENE A TR 7Ry g (TVYaTR ATV dE
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RO T g 47V TRy TV R g7v 38
By =6 e kB ATV (I Y(IV ) dITdIV dE
®»: Jo 0
5 T mg 0 R\ 2 Ry eV R gv g8
By = — e R E (IR p(r®)w(TV)dIdT" dE
m JxzJo 0
8 T e 9 2 Ry iV g R g gE
Bsa = — € B EE(TY) (@) W(T)dI dTV dE,
m JgaJo 0

16 TOO TR 1 mxE g / g
Bm:—/ f / e M E2TRTR IRy y(IVydTRdTY df .
m Jw3 Jo 0
Now we have

B R T oo —_m 2 oo 1R
Bis=4mme ks 'E (/ e kT ssds) (/ e kBT @(IR)EEIR>
I 0

L LA ’
(f e kaT-ﬂI‘)dI‘):ﬂ!p (E) f
0 Iy
+o0

m . . m +l\x’ . R
Bog = 24me | TEg ME (f ¢ TEET S sﬁds) (f ¢ ¥ IR o(Th) dIH)
0 0
+00 v ; A D 3
U e FaT (T ).ﬂ") =6(5!") p (_) Br.
0 p

Bas is similar to the previous one, with TV instead of T7: so it is

where eq. (24) has been used.

3
Baa = 6(5!) p (g) B .

e . o0 _ m toa — R
Bip = 2 gl U ¢ TS s*ds) (f e FaT (T7)? p(i’ff)ﬂﬂ)
m 0 0

too gV p\?
(f g k8T -r,."J{Ii’ ]dl"") =24p (—) Vi -
1] g

Bss is similar to the previous one, with 7V instead of T%; so it is

3
Bsa =24p (g) W -

64 q_m i +oa __m 9 o _i
Bgy = —me ' TEgME (f e TRpT * sdds) (f € "FTIHP(IH}G‘TIR)
T 0 0

teo gV %
(/ e kBT TV -:;J(I‘f;di‘f)=4sp (To) Br By .
0

So we have found the above reported expression for Ha.

WWWw.irjes.com 22 | Page



The Galilean Relativity Principle for a 16 Moments Model in Classical E.T. of Polyatomic Gases

¢ Let us consider now By = Bjg + Bag + Bag + By + Bsg + By with

+oo  ptoo ; _
Ba=m [ [ [ TS oty ua) ahar .
w3
too ptoo
ngzsff f e T RENE (B TR o (TRyy(TV)dTR ATV dE,
3 1]
+oa  ptoo
BES—Sf / f ]:EXI- ,:E'LITI- ""[IR}'L[I“ dIHdILd&,
+o0 o0 . .
By = — f f f XE ¢t (IR @Ry (V) dIR ATV dE,
R4
16 T T X a2 Ry TV g TR T 4
353=—/ f f e EEL IV o(TR)W(ITV)dIRdT dE,
m Jjgs Jo 0

+oo +oo
Bea — / / f T‘E)G' ‘g IR IE (IR) U(IE :IdIRdIb d‘g
Fpd
We have

o m ) +00 m 2 +o _ Th
Bz =4mme FgME (f e TRpT * sl':'ds) (f e WW(IRMIH)
0 0
+00 v B ; 4
(f e FaT (IV)dI" ) =0llp (E)
1] p
™ . +oo . m & +oo
ng=32?l‘6_1_7‘_3)‘”" (f e ThpT ® ssds) (f € *F""IR (IH)GEIH)
0 0

+00 Vv ) i 4
(f ¢ *aT g..-{z‘f)dz“) —8(T) p (E) Br.
0 a2

Bsag is similar to the previous one, with TV instead of T%; so it is

4
Bss = 8(7M) p (g) By .

64 —1-=Arg T m g G tea z® R o R
Big=_—me g OE (/ e TFET" g ds) (/ e FBT (T ) P(I*)dT )
] 1]

—+o0 e 4
(f e BT (T ;dz‘) =16 (5!) p (E) r.
0 e
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Bz is similar to the previous one, with T instead of T so it is

4
By = 16(5) (%) .

" i oo _ m +o0 _ Th
Bea — Eﬁe—l—ﬁ AIE (f ¢ TEGT 52 SGdS) (f e WIRW(IR} dIR)
0 ]

too gV - r 2%
(f e FBT IV (1" )dl"’) =32(5)p (E) Br By .
0

So we have found the above reported expression for Bs.
e Let us consider now Hay.

L . v .
It is similar to A9y p but there is the further factor % S0 we obtain

m el ;I—;- 3
Boy =8me | kg F (MBT) %D VT AR(T)By (T)+

2 111

5
41 ijgT z3 A .
+a§( = ) zﬁfﬂf“ﬂ”c"””ﬂ]’

which, divided by eq. (24) gives the above reported expression for Bay.

e Let us consider now By,
vy2
It is similar to Apy but there is the further factor (%) . 8o we obtain

2kgT
m

3 0
4 _q-m z 4p Cv AN
Bay = —7 L3 TAR(TICVvIT) = — — =4 =
W = —me ( ) VT AR(T)Cv (T) m A, s
which is the above reported expression for Bay.
e Let us conclude with BE{ = g 8.

a7V

It is similar to 4113} i but there is the further factor = So we have
9
e EpTHh= [ _ ) G ) ) 1 2
3 = (7) {k'-”‘”f By g (B Bt ArCy @ Apdy m’

ie.,
D 3
g =2p (E) (5{5’1;‘ +20v Br + 2w ) .
from which the above reported expression of B;{ follows.
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