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Abstract: Physical characteristic models are generally considered as the best way to evaluate reservoirs, whereas require 

some essential geological parameters involved in calculation. On purpose of promoting the efficiency of logging 

interpretation, a new combined method of N-way analysis of variance and multivariate linear fitting, thus, is proposed based 

on the statistical theories. The combined method has the capability of predicting porosity for the carbonate reservoirs without 

aiding any geological parameters. Additionally, according to the statistical results of multiple comparisons, the fitted values 

can be accurately corrected, further. The whole processing procedures are completed in only three steps. Using N-way 

analysis of variance to optimally select logging curves is the first step. Then figuring out values by applying the established 

multivariate linear fitting model. Finally attempting to improve the accuracy of fitted results with the creative algorithm of 

fitting correction. Five cases are comprehensively analyzed in the verification of proposed method. As a results, the mean 

absolute errors of all the fitted values calculated by N-way analysis of variance are relatively smaller than that only by the 

multivariate linear fitting method. After the fitting correction, almost all the fitted results are getting much closer to the core 

data, especially in the case that the accuracy can be raised up by nearly 30% when the robustness of the fitted coefficients is 

enhanced. All the calculated results and analytical conclusions convincingly prove the fact that the combined method can 

predict the porosity of lacustrine carbonate formations in a cost-efficient way, and the results are reliable enough to sever as 

the reference data for other relative work.  
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I. INTRODUCTION 
Generally, porosity prediction is considered as one of the most important contents for reservoir evaluation. With 

deep analyzing of porosity data, many reservoir characteristics can be comprehended in the aspects of storing capability of 

fluid or diagenesis processes, etc. At present, theories and methods system of logging interpretation is mainly composed of 

physical model, artificial intelligence and statistical analysis (Down, P.A., 1992; Bassiouni, Z., 1994; Asoodeh, M., 

Bagheripour, P., 2013a). Physical models established based on reservoir physical properties usually applies geological 

statistical parameters which are normally acquired from core experiments. On early developing stage of logging 

interpretation, one of the most practical models is average time equation (Wyllie, M.R.J., et al., 1956). Such equation can 

effectively calculate the porosity but is inappropriate for formations with high shale content and developed fractures. 

Furthermore, Raymer (1980) studied the relationship between shale content and acoustic time through doing a great deal of 

core experiments, and proposed an improved model. Although giving satisfactory prediction for shale-sand reservoirs, this 

model neglects the influence of fractures which will cause cycle skip of acoustic waves. Under researching of transmission 

properties of acoustic waves in sand-shale formations, Xu and White (1995) put forward an important velocity model as 

tools to assist other models in solving reservoir evaluation. Keys (2002) simplified the velocity model in accordance with 

geophysical theories to expand application range. In view of development of both fractures and faults formed in carbonate 

formations, more geological parameters are required to involve in the physical model establishment for reservoir 

characterization (such as pore fluid pressure, fluid viscosity coefficients, geostress, etc.) (Gupta, A., Civan, F., 1994; 

Hamilton, E.L., et al., 1982; Han, D.A., et al., 1986; Kahraman, S., Yeken, T., 2008; Boadu, F.K., 2001; He, J., et al., 2016). 

Therefore, the workload and cost of projects are increased, and logging interpretation becomes more challenging.  

In some regions, due to complex depositional situation or great depth of target layers and limited number of 

exploratory wells and well logging data, many parameters of physical models cannot be estimated. However, artificial 

intelligence algorithms have the capability of evaluating reservoir only by applying their exclusive prediction system. As 

humans learn knowledge and recognize things, such systems are generally built up by analyzing and matching basic data. 

(Emilson, P.L., ALexander, C.V., 2011; Nahser, M.A., Wang, Y.H., 2011; Jamialahmadi, M., Javadpour, F.G., 2000; Helle, 

H.B., et al., 2001; Ou, C., et al., 2016). However, in most cases these algorithms still need larger amounts of basic data to 

establish high-quality prediction system in order to ensure the validity of results, indicating that such kind of methods are 

also unsuitable for solving logging interpretation problems on condition of lacking of basic data (Rui, Z., et al., 2013a, 2013b; 

Sun, J., et al., 2016; Zhao, X., et al., 2014, 2016).  

Linear fitting or regression is one of the most widely used statistical methods for reservoir evaluation (Ehrenberg, 

S.N., 1993; Moraes, M.A.S., De, Ros, L.F., 1990; Rui, Z., et al., 2011a, 2011b). This method often builds up the fitting 

equations with little logging data and uses fitted coefficients to predict parameters. In General, results obtained from the 
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multivariate linear fitting models are much more accurate than that from the linear fitting ones. The reason is that the 

interrelations and responses between variables and targets are considered and analyzed in the multivariate models (Byrnes, 

A.P., Wilson, M.D., 1991; Zhao, X., et al., 2015a, 2015b). Whereas those irrelevant variables will bring about passive 

impacts on calculation of the multivariate linear fitting, which leads to the unreliability for the fitted results. Analysis of 

variance, a kind of statistic method, select useful data sets based on their significance (Fisher, R.A., 1936). Based on the 

function of analysis of variance, those critical influence factors can be validly picked out from the abundant raw logging data, 

and then the multivariate linear fitting will be used in a reasonable way (Lindley, D.A., 1957; Berger, J.O., Delampady, M., 

1987; Berger, J.O., Sellke, T., 1987; Yi, K.N., Cheng X.J., 2013; Rui, Z., et al., 2012a, 2012b). As each kind of the analytical 

data must be graded into several levels before operating analysis of variance, the special relationship between targets and 

so-called "level combinations" consisting of graded data can be found. Thus according to the statistical results of the level 

combinations, each fitted value obtained by the multivariate linear fitting model can be accurately corrected in accordance 

with such relationship, to some degree.  

The purpose of the study is to acquire the porosity of lacustrine carbonate formations in a cost-efficient way 

without aiding any other geological parameters. Furthermore, applying the results of multiple comparisons to improve the 

accuracy of fitted values in a special way. Therefore, a new combined method of N-way analysis of variance and 

multivariate linear fitting is proposed.  

 

II. METHODOLOGY 
At present, analysis of variance has been developed into the different types such as the one-way, two-way, or 

three-way, etc. (Delampady, M., Berger, J., 1987; Dempster, A.P., 1971; Dickey, J.M., 1971). For predicting porosity usually 

needs two or more logging curves, the type of analysis of variance should be N-way but not in interaction. No detailed 

deductions of N-way analysis of variance are available to use, so the mathematic analysis is decided to start by referencing 

the theory of the three-way.  

 

2.1. Model Building 

Suppose that there are three factors respectively labeled with A , B , C . Factor A  can be divided into r  

levels, and marked with 1A , 2A ,  , rA ; factor B  divided into s  levels 1B , 2B ,  , sB ; factor C  divided into 

t  levels 1C , 2C ,  , tC . Target sample is set as X . If all combinations ( iA , jB  , kC ) corresponded to ijkX  are 

independent and comply with the normal distribution, then the following equations can be given as: 
2~ ( , )ijk ijkX N    (1) 
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where   is the sample mean, i   the mean of i'th level of factor A , j   the mean of j'th level of factor B , k  the 

mean of k'th level of factor C , i  the deviation of i   for the  , j  the deviation of j   for the  , k  the 

deviation of k  for the  , 1,2, ,i r  , 1,2, ,j s  , 1,2, ,k t  . 

 

Obviously, i , j , k  satisfy the expressions below according to the Eqs. (2) and (3): 
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if ijk i j k        , then the model of three-way analysis of variance can be written as below: 
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where ijk  is the error. 

 

2.2. Hypothesis Test  

The judging equations of hypothesis test are set below: 
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where 01H  is the first hypothesis condition that all levels of factor A  equal to the sample mean; 02H  the 

second hypothesis condition that that all levels of factor B  equal to the sample mean; 03H  the third hypothesis condition 

that all levels of factor C  equal to the sample mean. 

 

2.3. Sum of Square of Deviation and Decomposition Equation 

Several essential variables are designed as shown below: 
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if TS  is written as: 
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then the expressions of sum of deviation squares for each term in Eq. (8) are derived as follows: 
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where AS  is the sum of deviation squares of factor A , BS  the sum of deviation squares of factor B , CS  the sum of 

deviation squares of factor C , ES  the sum of deviation squares of error. 

    On the basis of Eq. (9), AS , BS , CS  respectively obey the distribution as: 
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2.4. Non-interactive Influence Analysis 

Aiming at the independent properties of analytical factors, non-interactive influence should be analyzed in the 

following processes. In this step, those variables that the degree of freedom of the factor A , B , C , error E , total sum 

T , the mean square of the factor A , B , C , error E  and the F  value of the factor A , B , C  are all needed to be 

calculated out. The equations used to compute the degree of freedom for all terms are presented as below:  
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The sum square and F  value are expressed as: 
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2.5. Testing Rules 

In order to reveal the significance of each factor, F  value should be compared with the confidence level  . The 

testing rules are given as the follows: 

if A 1F F ( 1,( 1)( 1)( 1) ( 1)( 1) ( 1)( 1) ( 1)( 1))r r s t r s r t s t              , 01H  is rejected, which indicates that 

each level of factor A  has the significance. 

    if B 1F F ( 1,( 1)( 1)( 1) ( 1)( 1) ( 1)( 1) ( 1)( 1))s r s t r s r t s t              , 02H  is rejected, which indicates 

that each level of factor B  has the significance.  

    if C 1F F ( 1,( 1)( 1)( 1) ( 1)( 1) ( 1)( 1) ( 1)( 1))t r s t r s r t s t              , 03H  is rejected, which indicates 

that each level of factor C  has the significance. 

 

2.6. N-way analysis of variance 

Assume that there are N  factors with the labels of 1N , 2N ,  , NN . All factors are independent and each 

of them has r  levels. Before establishing the variance model, some marks should be defined as below in order to simply 

the expression for the following analysis:  
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According to the whole deductions of the three-way analysis of variance and the defined marks above, some 

fundamental equations can be obtained as below: 
2~ ( , )X N     (13) 
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Thus , the model of N-way analysis of variance is: 
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The judging conditions of hypothesis test are: 
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Based on the processing procedures of non-interactive analysis, the equations of those which are the sum of deviation 

squares, degree of freedom, sum square and F  value are derived out as shown below: 
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The degree of freedom for each factor is 1r  , the error 
1( 1) ( 1)N Nr N r    , the total sum 
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. The sum square and 

F  value, hence, can be obtained as: 
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2.7. Fitting Correction 

Based on the theories of linear fitting, if p value of constant term is much larger than that of all coefficient terms, 

the variation of the fitted results will be primarily controlled by the constant, which will cause all the fitted values to be 

nearly same. Thus, the constant term should be removed in order to improve the impact degree of the coefficient terms on 

the fitted results. Accordingly, the fitting equation is advised to change into the form as below: 
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where C  is the constant term, ia  and ib  the fitted coefficient, 
~

y  the fitted value, n  the number of coefficient term.  

As all data sets must be graded into several levels before processing the N-way analysis of variance, the particular 

relationships between the fitted values acquired by Eq. (22) and those so-called "level combinations" mainly consisting of 

graded analytical data can be build up. Then the fitted results, to some degree, will be further and detailedly corrected in an 

effective way with using some defined computational rules. In this paper, a creative algorithm of fitting correction is 

proposed. The first step of this algorithm is to confirm the deviation trend of target sample to be larger or smaller compared 

with the mean, which can be realized by statistical methods such as maximum likelihood estimation. Define that greatC  and 

smallC  that the number of larger and smaller values are respectively determined by the expressions greatC = X  and 

smallC = X . If great smallC C , all values of the sample tend to be larger. Then all X  are decided to sort according 

to the formula as: 

descendsort ( )X X  (23) 

where X  is the inverted order of all X .  

Based on vector X , those special relationships between sample values and the related level combinations can be 

revealed well. Note that if one level combination corresponds to several different target values X , the mean will be 

assigned as the new target value to this level combination. However, the degrees of deviation of all X  do not determinate 

in the vector X , or in other words, X  does not present the significant degree of all level combinations. So Eq. (23) has 

to be transformed into another form as the expression below: 

con_level MAX/ X  X X  (24) 

where con_levelX  includes the significant degrees of all X , MAXX  the maximum of X .  

According to the changing trend of the target sample, if the significant degree in con_levelX  is higher, the 

corresponding fitted value can be considered to be more reliable. As little logging data are available to evaluate reservoirs, 

con_levelX , the target sample cannot reflect the actual variation of the totality, or in other words, partial values of con_levelX  

are incredible. With the purpose of applying the significant degree in a reasonable way, con_levelX  is intended to divide into 

the credible and incredible two sections with the defined boundary  . This parameter can be respectively described by the 

expressions con_level  X  and con_level  X . In order to make the range of significant degree be same with that of the 

credible sections from 1 to  , the incredible section should be recalculated by the following formula: 

_level less_ /    X X  (25) 

where less_X  is the incredible section, _ levelX  the significant degree vector of the incredible section. 

The aim of transformation of Eq. (25) is to let the incredible sections can be analyzed and processed in a similar or 

even same way with the credible one in order to simply the processing procedures of fitting correction.  

As the significant degrees within the credible section are all relatively reliable, the fitted values in this step can be 

directly corrected by the standard errors which are obtained from the multiple comparisons and included in the level 
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combinations. If the fitted value is larger or smaller than the corresponded X , it should be corrected by reducing or 

adding the standard error. The equations for this kind of fitting correction are given as below: 
~ ~

~
std

new _ ~ ~

std

, ( )

,( )

i i

i

i i

y X y X
y

y X y X

 

 


 

 
  

 (26) 

where 
~

_new iy  is the fitting corrected value, 
~

iy  the fitted value, stdX  the standard error of i'th level combination. 

For the incredible section, several circumstances should be discussed so the processes will be complicated. If the 

distance (difference) between X  and the corresponding fitted value is less than stdX , the fitted value also can be 

directly corrected by stdX . Because all X  are relatively unreliable in this section, the distance should be expanded, or 

in other words, the fitted values must be changed far away instead of getting closer to the X . The fitting correction, 

therefore, will be processed inversely in comparison with Eq. (26), which implies that the fitted value should be added with 

correction volume if the fitted value is larger, or subtracted on the contrary. The fitting correction equations in this case can 

be written as: 
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 (27) 

 

 

where _ level _ iX  is i'th significant degree of _ levelX . 

 

In Eq. (27), the significant degree of the fitted value is viewed as _ level _ iX . On account of the definition of 

correction volume described above, the degree that corresponds to the expanded part of the distance should be _level_1 iX , 

which explains the calculation principle of fitting correction for this situation.  

 

If distance is larger than stdX , the fitted value will be considered as the most unreliable one in all circumstances. 

So the value must be recalculated again to decrease the distance in order that it can processed in a reasonable way with the 

correction equations as Eq. (27). There are a variety of recalculated methods, e.g. image method which can reasonably 

modify the fitted values with the defined upper or lower boundaries based on the reflection principle. If the distance between 

the modified value and X  is less than stdX , the modified value will be used in the following processes instead of the 

original fitted value. Otherwise, if the distance is still rather larger, the modified value cannot be accepted until it satisfies the 

requirement of the fitting correction for this situation. 

The modified value is defined as 

~
'y , then the corresponding fitting correction equations can be written as the follows: 
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2.8  Computational flow 
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 According to the algorithm and processing details concerning the N-way analysis of variance, multivariate linear fitting 

and fitting correction, the computational flow of the proposed combined method can be designed as shown in Fig. 1. All the 

essential processing procedures are listed and connected. Based on the collected data, using N-way analysis of variance to 

select significant logs. Then establishing the predicted equations by the principle of multivariate linear fitting. Finally, under 

the fitting correction algorithm, the results will be processed again to improve their accuracy. The automatic program can be 

coded by following such flowcharts.  
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Fig.1. Computational flowchart of combined method of N-way analysis of variance and multivariate linear fitting. 

 

III. DATA SOURCE 
 Verified data are selected from the Brazilian pre-salt lacustrine carbonate reservoirs. These reservoirs are primarily 

distributed both in Santos and Campos Basin as presented in Fig. 2, and all of them are regarded as the large-scale 

petroleum-bearing belts. Among those basins surrounding the Atlantic Ocean , Santos is the largest one in scales and its 

recoverable oil-gas reserves can reach up to 39.2 bboe which almost shares 86% of the total quantities. The numbers indicate 

that it is the most important exploration region within the Brazil pre-salt lacustrine carbonate formations (Fainstein, R., et al., 

2001; Mohriak, W.U., 2001).  

 

 
Fig.2. Distribution of Brazilian pre-salt lacustrine carbonate reservoirs.  

 

Based on the deep analysis of regional seismic data and casting lamellas, the lacustrine carbonate formations 

within Santos Basin perhaps have suffered halokinesis, dolomitization, or hydrothermal erosion during the complex 

diagenesis evolutions (Mohriak, W.U., 2005; Mohriak, W.U., et al., 2008a; Quirk, D.G., et al., 2012; Jurgen A, et al., 2014; 

Montaron, B., Tapponier, P., 2010; Rui, Z., et al., 2012c, 2012d). Hence, those formations generally present with the strong 

fluid storing capability owing to the developed pore-throat and fractured systems. For the reason that the large depth of target 

layers brings about the high cost for project, only fewer exploration wells have been drilled in the Santos Basin, i.e. IARA oil 

field which only includes 12 wells. Inadequate data of IARA cannot meet the processing requirement of physical models, 

and accordingly proposed combined method is adopted to use for porosity prediction. 

 

IV. Results And Discussion 
4.1. Curve Selection 

Distribution of wells within the work area of IARA oil field is presented in Fig. 3. The study region is mainly 

consisted by three structural high points which are formed severally with the different tectonic movements and sedimentary 

cycles (Moczydlower, B., et al., 2012). In order to prove the prediction capability of the proposed method with less words, 

the logging data derived from any one high point are chose as the target samples for verification. For instance, four wells 

located in the middle structural high point are selected as samples, namely RJS-715, RJS-656, RJS-726, RJS-682. RJS-715 is 

a horizontal well which is out of analysis scope, and thus only three wells provide the available logging data, but enough. 

The sample used for establishing the fitting models can be selected from any wells, i.e. RJS-682. The relative logging curves 

are shown in Fig. 4. Thereinto, CAL and BS are related to well caliper; GR and SGR have something to do with shale 

content; all of RXO, RI and RT response to the resistivity from undisturbed to flushed zone; AC, CNL and DEN are all 

concerned with porosity; PE can be used to analysis lithologies and lithofacies. On account of geophysical responses of each 
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curve regarding the porosity, GR, SGR, RT, AC, CNL, DEN and PEFZ that seven curves are determined to set as the test 

data. μ 

 

 
Fig.3. Work area of IARA oil field. 

 

 
Fig.4. RJS-682 well logging curves. 



Quick porosity prediction for carbonate reservoirs using modified N-way analysis of variance 

www.irjes.com                                  83 | Page 

 
Fig.5. Partial logging and core porosity data (acquired from MCIP) of RJS-682 well. 

 

4.2. N-way Analysis of Variance 

The numeric data of both curves and core porosity are partially presented in Fig. 5. Direct and indirect geophysical 

responses of those seven logging curves are not all effective in the porosity prediction. So N-way analysis of variance is 

adopted to filter the irrelative data. Before operating the process, all the curves should be graded into several levels in 

accordance with the theories. Nothing of the gradation should be complied with but only one point must be noted that both 

theoretical and actual freedom degree of each curve should be equivalent. According to the gradation principle above, all 

curves are decided to grade into 3, 4, or 5 levels in order to find out the rational gradation through comparisons. By applying 

the Eqs. (13) to (21), the analytical results of variance are respectively presented in Tables 1 to 3. In Table 1, freedom degree 

of both GR and SGR do not reach to the theoretical ones. That implies that these two curves are almost entirely graded into 

only two levels so the three-tier gradation is unsuitable. Moreover, the freedom degree of DEN in Table 3 is less than the 

demanded value in theory, and thus five-tire gradation also cannot be accepted. All freedom degrees in Table 4, however, are 

eligible and thus the four-tier is set as the standard gradation which will be adopted in the follow-up calculations. Assuming 

that the confidence level is 0.11, those curves of GR, SGR and RT present with small significance due to their larger p values 

and then should be removed. Therefrom, the logging data have been completely filtered by N-way analysis of variance, and 

four significant curves are preserved as the fitting variables. 

 

Table 1: Summary of calculated results for the N-way analysis of variance under three-tier gradation 
Source Sum Sq. d.f. Mean Sq. F Value Prob>F 

AC 38.49 2 19.24 1.2 0.3082 

CNL 112.97 2 56.48 3.51 0.0348 

DEN 176.9 2 88.49 5.49 0.0059 

GR 3.13 1 3.12 0.19 0.6607 

SGR 11.62 1 11.62 0.72 0.3982 

PE 14.73 2 7.36 0.46 0.6346 

RT 7.34 2 3.67 023 0.7966 

Error 1239.85 77 16.11 / / 

Total 2215.57 90 / / / 

Table 2 Summary of calculated results for the N-way analysis of variance under four-tier gradation 
Source Sum Sq. d.f. Mean Sq. F Value Prob>F 

AC 88.15 3 29.38 2.1 0.1036 

CNL 162.67 3 54.22 3.87 0.0109 

DEN 82.71 3 27.56 1.97 0.10219 

GR 76.16 3 25.38 1.81 0.148 

SGR 64.24 3 21.43 2.2 0.2099 
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PE 92.53 3 30.84 0.85 0.0909 

RT 35.75 3 11.92 1.53 0.4682 

Error 1749.15 125 13.99 / / 

Total 3170.72 146 / / / 

 

Table 3 Summary of calculated results for the N-way analysis of variance under five-tier gradation 
Source Sum Sq. d.f. Mean Sq. F Value Prob>F 

AC 103.67 4 25.92 1.75 0.1425 

CNL 261.58 4 65.39 4.41 0.0021 

DEN 66.83 3 22.27 1.5 0.2164 

GR 29.45 4 7.36 0.5 0.7386 

SGR 77.47 4 14.84 1.31 0.2705 

PE 147.62 4 36.91 2.49 0.0457 

RT 13.95 4 3.48 0.23 0.9183 

Error 2330.1 157 14.84 / / 

Total 3900.42 184 / / / 

 

Table 4 Summary of calculated results for the N-way analysis of variance under four-tier gradation 
Source Sum Sq. d.f. Mean Sq. F Value Prob>F 

AC 105.34 3 35.31 2.23 0.0858 

CNL 240.97 3 80.32 5.06 0.002 

DEN 111.44 3 37.14 2.34 0.0739 

PE 166.65 3 55.54 3.5 0.0161 

Error 3822.9 241 15.86 / / 

Total 5363.24 253 / / / 

 

Based on the standard gradation, the analytical results of these four curves are obtained and presented in Table 4. 

Compared with the defined confidence level, all p values manifest that the four selected curves have obvious significance on 

porosity, which proves once again that the results of N-way analysis of variance is correct and the adopted gradation is 

suitable for processing data.  

 

4.3. Multivariate Linear Fitting 

According to the analytical results of variance, four selected logging curves that AC, DEN, CNL, PE are assigned 

as the variables in the multivariate linear fitting and core POR data as the targets. Therefrom, the fitted equation is derived as 

shown below: 

POR 0.254 AC 0.439 CNL 30.55 DEN 1.1 PE 91.414           (30) 

 

In Eq. (30), the p value of constant is larger than that of all coefficient terms, which indicates that the variation of 

fitted values is dominantly controlled by the constant rather than others. So the constant term must be removed. The new 

fitted equation is given below: 

POR 0.119 AC 0.889 CNL 1.431 DEN 1.529 PE          (31) 

 

The analytical results of the multivariate linear fitting model are presented in Fig. 6. In Fig. 6 (a), the residuals 

distribute randomly on both sides of 0y  , manifesting that the residuals are independent for each other. As the 

distributions of residuals displayed in Fig. 6 (b) and (c) comply with the normal pattern, the fitted equation can be considered 

that it is correct to use as the fitting model. 

 

4.4. Fitting Correction 

    In this step, the fitted values will be processed by Eqs. (22) to (29) with the results of the analysis of variance and 

multiple comparisons. Aiming at the Eqs. (28) to (29), the image method is adopted for recalculating the fitted values. There 

are two situations probably occur in the processes. The first one is presented in Fig. 7 (a). In this case, as the distance d  

between the fitted value and defined boundary is less than stdX , the modified value can be worked out at only once time. 

The second one is shown as Fig. 7 (b). This figure illustrates that if d  is larger than stdX , the modified value will not 

be eligible at the first processing time, so the calculation will not stop until the final result meets the requirement of fitting 

correction. 
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(a) Distribution of the residuals; (b) Histogram of the residuals; (c) Normal probability  

distribution of the residuals 

Fig.6. Analytical results of multivariate linear fitting model. 

 

 
Fig.7. Using image method to correct fitted value in the first (a) or second situation (b). 
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4.5. Discussion 

According to the processes of N-way analysis of variance and fitting correction, the fitted and fitting corrected 

porosity can be respectively obtained. For other two wells, the prediction was conducted in the same way as the RJS-682 

well. The accuracy of all the results are used to verify with the core data. The mean absolute error (MAE) is the indicator to 

evaluate the accurate degree. Now, the results from five different cases will be discussed below. 

The processed results of RJS-682 well are all presented in Fig. 8. Among of them, Fig. 8 (d) and (e) respectively 

illustrate the deviation of the fitted or corrected porosity compared with the core data. Generally, the fitted values fall within 

the deviation range between -2 and 2 are reliable and acceptable. But due to only limited data used for prediction, the 

overfitting problem of the fitting is possible, and thus most of the fitted results does not achieve such accurate degree. 

Therefore, the commonly used deviation range should be enlarged in order to reasonably weigh the accuracy of the fitted 

results. In this case, if the value is included in the deviation between -3 and 3, it will be view as the reliable one. In Fig. 8(e), 

the ratio of deviation between -3 and 3 seems to be larger than that in Fig. 8 (d), so the corrected values, to some degree, can 

be considered much closer to the core data. Besides, according to the mean absolute error (MAE) of the corrected and fitted 

values of 3.12 and 3.17 respectively, the accuracy of fitted results are improved by nearly 2% after fitting correction. So 

based on the analytical results, the creative algorithm of fitting correction really takes effects on the accuracy improvement 

of the fitted results. 
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(a) Distribution of core porosity; (b) Distribution of fitted porosity; (c) Distribution of fitting corrected porosity; (d) 

Deviation of core and fitted porosity; (e) Deviation of core and fitting corrected porosity 

Fig.8. Comprehensive processed results of RJS-682 well. 

    

In the porosity prediction of RJS-726 and 656 wells, the raw data will be processed in the same way as the 

previous case. The comprehensive results are displayed in Figs. 9 and 10. For the RJS-726 well, the ratio of deviation 

between -3 and 3 in Fig. 9 (e) also seems to be larger than that Fig. 9 (d). Accordingly, the MAE of corrected values 5.43 is 

less than that of the fitted ones 5.63. As the accuracy raises up by almost 3.6% after fitting correction, the fact that creative 
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algorithm can properly correct the fitted results is convincingly proved again. For the RJS-656 well, although the deviations 

of the results presented in Figs. 10(d) and 10(e) are rather similar, the MAE of the corrected porosity 4.71 is unexpectedly 

larger than that of the fitted ones. The bad effect of fitting correction is mainly caused by the overfitting, or in other words, 

the used fitted coefficients and the statistical results of "level combination" are not suitable for any cases but only RJS-682 

and 726 wells. Improving robustness of the fitted coefficients is normally viewed as the most efficient way to eliminate the 

overfitting impacts of the fitting models. The process can be operated by adding more logging data as the basic data used for 

fitting. So in the second verification of RJS-656 well, the compounding data composed of that of the RJS-682 and 726 wells 

will be applied to establish the new fitting model. The related results are presented in Fig. 11. Compared to Fig. 10 (e), the 

ratio of deviation between -3 and 3 in the Fig. 11 (b) seems to be larger, and correspondingly the MAE of corrected porosity 

is reduced to 3.34. Nearly 30% raise of the accuracy of fitted results strongly proves that the combined method can predict 

porosity in a more accurate way through improving the robustness of the fitted coefficient even though only two wells' data 

are available.    

 

Aiming at the twice verifications of RJS-656 well, the case of RJS-726 is interpreted again to confirm the 

practicability of the robustness improvement. The compounding data used for fitting consists of that of the RJS-682 and 656 

wells. Fig. 12 displays the distribution and deviation of the corrected results. In Fig. 12 (b), the ratio of deviation between -3 

and 3 is undoubtedly larger than that in Fig. 9(e). As the MAE is 4.39, the accuracy is greatly raised by nearly 20% with 

comparison to that in the first verification. Likewise, the increase of accuracy prove the fact again that under condition of 

enhancing the robustness of the fitted coefficients, the proposed method can calculate out more accurate porosity values.  

Consequently, the proposed combined method has the capability of predicting porosity for the lacustrine carbonate 

reservoirs with limited basic data, and after process of fitting correction, the fitted values will be more accurate, generally. 

But if the overfitting problem of fitting model passively influence the prediction effects of the combined method, enhancing 

robustness of the fitted coefficients will be better way to improve the accuracy of the fitted results. Predicting porosity with 

little logging data, so the mean of improving robustness will not be considered firstly unless the fitting corrected results are 

really unreliable.  
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(a) Distribution of core porosity; (b) Distribution of fitted porosity; (c) Distribution of fitting corrected porosity; (d) 

Deviation of core and fitted porosity; (e) Deviation of core and fitting corrected porosity 

Fig. 9. Comprehensive processed results of RJS-726 well. 
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(a) Distribution of core porosity; (b) Distribution of fitted porosity; (c) Distribution of fitting corrected porosity; (d) 

Deviation of core and fitted porosity; (e) Deviation of core and fitting corrected porosity 

Fig.10. Comprehensive processed results of RJS-656 well. 
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(a) Distribution of fitting corrected porosity; (b) Deviation of core and fitting corrected porosity 

Fig.11. Processed results of RJS-656 well.  

 

 

 
(a) Distribution of Fitting corrected porosity; (b) Deviation of Core Porosity and Fitting Corrected Porosity 



Quick porosity prediction for carbonate reservoirs using modified N-way analysis of variance 

www.irjes.com                                  93 | Page 

Fig.12. Processed results of RJS-726 well. 

 

IV. CONCLUSION AND RECOMMENDATION 
Based on the comprehensive analysis of three wells located in one middle structural high of IARA oil field, the 

advantages of the proposed combined method can be summarized as below: 

(1) The proposed method has the capability of selecting out the significant logging curves for the porosity through N-way 

analysis of variance. Before operating the calculation, each logging curve should be divided into several levels in 

accordance with the applied gradation standard. The principle of designing gradation is that both theoretical and 

calculated freedom degree must be equivalent. Based on the logical relationship between p values and defined 

confidence level, the significant curves can be found out, and then the raw data is filtered, accordingly.  

(2) According to results of multiple comparisons, the fitted values obtained from the fitting model can be accurately 

corrected by the creative algorithm of fitting correction so as to increase the accuracy of the fitted values. In this way, 

the corrected porosity will be generally getting much closer to the core data with respect to the fitted ones, which has 

been proved in the first verification of porosity prediction of RJS-682 well. 

(3) Improving robustness of the fitted coefficients can significantly enhance the predictive capability of the proposed 

combined method. Compared to the fitted results of RJS-656 well in its first process, the accuracy of corrected values 

obtained from the compounding logging data is substantially raised by nearly 30%. Moreover, the second verification 

of RJS-726 well also receives the same good effect with accuracy improved by almost 20%.  

(4) In contrast with the physical models, the proposed combined method can predict the porosity in a cost-efficient way 

without aiding any geological parameters, especially in those circumstances of lack of the available logging data. 

    This study provides a cost-efficient tool for petroleum researchers and engineers to acquire the porosity of carbonate 

formations. Accordingly, the results are reliable enough to set as the reference data for the related geological basic works. 

For the next step, more practical methods regarding predicting permeability and pore pressure with limited data will be 

probed and studied in order to simplify the processing procedures of reservoir evaluation.     
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