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Abstract:- Sorting data is one of the most important problems that play an important rule in many applications 

in operations research and computer science. Many sorting algorithms are well studied but the problem is not to 

find a way or algorithm to sort elements, but to find an efficiently way to sort elements. The output is a stream 

of data in time. We are interested in this flow of data. For the performance of such algorithms, there has been 

little research on their stochastic behavior and mathematical properties.In this paper we study the mathematical 

behavior of some different versions sorting algorithms. We also discuss the corresponding running time using 

some different strategies.  
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I. INTRODUCTION  
Classical analyses of sorting algorithms make the efficiency is the general purpose. The efficiency of 

the good algorithm depends on many various factors such as , software and hardware use. More recently 

researchers have recognized that on modern computers the cost of access- ing memory can vary dramatically 

depending on whether the data can be found in the first-level cache, or must be fetched from a lower level of 

cache or even main memory. The efficiency of an algorithm using a poor code, is differ than using a good code, 

in addition the operating system itself. The running time of executing sub-arrays is particularly important for 

sorting because the inner-loops of most common sorting algorithms consist of comparisons of items to be sorted. 

Thus, the expected of these comparisons to do the job is critical to the performance of sorting algorithms. 

Throughout this paper we ignore all aspects of these factors unless the the behavior the sorting scheme whose 

outcome depends on a number of comparisons needed to the sorting algorithm in its input. 

Selecting a good pivot is important. A poor choice of a pivot could give a running time quadratic 

proportional to the number of elements squared. Therefore selecting a good pivot greatly improves the speed of 

the Quicksort algorithm. Many people just use the first element in the list as the pivot, however this causes the 

sort to perform very badly if the data is already sorted. There are several methods to avoid the worst case in 

practical solutions. Unix uses the median of the first the last and the element in the middle. Therefore, when 

choosing the pivot we need to be more careful. For example, when Quicksort is used in web services, it is 

possible for an attacker to intentionally exploit the worst case performance and choose data which will cause a 

slow running time or maximize the chance of running out of stack space. The choice of a good pivot greatly 

improves the speed of the Quicksort algorithm. 

The simplest way is to choose an arbitrary element say the first for example as pivot, this does not 

avoid the worst case. Instead of using the first element, a much better method is called median of three 

Quicksort. In that method choose the pivot of each recursive stage as the median of a sample of three elements. 

Other method is to take tree samples, each sample contain 3 elements, take the median for each sample and 

choose the median of three medians as a pivot,this method called pseudomedian of 9 Quicksort.  

To make sure to avoid any kind of presorting it is better to use the median element of the first, middle, 

and the last element as a pivot. To optimize the algorithm, for an array smaller than 7, the pivot is chosen as the 

middle key or sort with the standard Quicksort, for mid-sized arrays( for an array of size between 8 and 39) the 

pivot is chosen using the median-of-three Quicksort, and finally for larger arrays use the pseudomedian of 9 

Quicksort. This helps some but unfortunately simple anomalies happens [1]. 

Some recent papers considered a version of Quicksort algorithgm called the random median Quicksort. 

For a random variable k, the pivot element has been selected to be the median of 2k+1 elements. In each step 

recursively recall of the algorithm. Later, many researchers has received the interest of the visualization of 

multi-pivot Quicksort in accordance with Yaroslavskiy proposed the duality pivot process which outperforms 

standard Quicksort by Java JVM. After that, this algorithm has been explained in terms of comparisons and 
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swaps by Wild and Nebel [6]. Not long ago, a new version from Dual-pivot Quicksort algorithm has some other 

number k of pivots. Hence, we discuss the idea of picking k pivots,  by random way and splitting 

the list simultaneously according to these. The modified version generalizes these results for multi process. We 

show that the average number of swaps done by Multi-pivot Quicksort process and a special case. Moreover, [7] 

obtained a relationship between the average number of swaps of Multi-pivot Quicksort and Stirling numbers of 

the first kind. 

 

Let nX  be the number of comparisons used by Quicksort to sort a list of size n . The random variable 

nX  is basically proportional to the running time of Quicksort which depends (a little bit) on the implementation 

and computer hardware. The average number )( nXE  of comparisons [1] is nnXE n ln)(  . The first complete 

running time analysis for a random divide and conquer was for Quicksort [13]. The random variable  

n

XEX
Y nn

n
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=


 

 converges in distribution to a random variable Y , which distribution is characterized as the unique 

solution of the stochastic fixed point equation 

)()(1= 21 UCYUUYY 
D

 

with expectation 0 and finite variance. Here U  is uniformly distributed on [0,1]  and 
21,, YYU  are independent. 

1Y  and 2Y  have the same distribution and C  is given by  

[0,1]1,)(1ln)2(1ln2:=)(  xxxxxxC . 

 Quickselect or FIND, introduced by Hoare [2] in 1961 is a search algorithm widely used for finding the 

l -th smallest element out of n  distinct numbers. Most of the mathematical results on the complexity of 

Quickselect are about expectations or distributions for the number of comparisons needed to complete its task 

by the algorithm [10]. A pivot is uniformly chosen at random from the available n  elements, and compares the 

1n  remaining elements against it. 

Let )(kX n  be the number of comparisons needed to find the l -th smallest out of n . The running time of this 

algorithm is always a random variable either by random input or internal randomness. The expectation of 

)(kX n  is explicitly known [1]  

))3(2)(1)(32(=))(( 1 knknn HknHkHnnkXE   

for nk 1 , and kH  denotes the k -th harmonic number. An asymptotic approximation as n  is  

)(1ln)2(1ln22
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tttt
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kXE n   

for 1=0 
n

k
t  . The asymptotic variance ))(( kXVar n  was derived using combinatorial and generating 

function methods [10]. Furthermore, Roesler [9] studied the limiting distribution of )(kX n  or nX  as a process. 

 A major tool are fixed point equation and the contraction method for operator K  like  
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 The random variables iYCBA i ,),,,(  are independent and the random variables iY  have the same 

distribution  . In a more general form of (1), Knof and Roesler [3] considered general recurrence  
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 on the set D  of cadlag functions on the unit interval [0,1] . Here 
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i CAY ,,  have values in the set D . The random variables 
n
iB  take values in 


D , the set of all 

maps from the unit interval to itself and piecewise increasing. 

 Under some assumptions they showed the existence of solutions of (2) via the weighted branching process, and 
nY  converges in distribution to Y  satisfying  
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 The contraction method invented for the analysis of Quicksort, proved to be very successful for other 

algorithms [5, 11]. The contraction method is a general method to derive convergence in distribution of 

recursive structures. This method was pioneered by Roesler [11] and later by Neininger [5]. This method was 

explained in the context of several divide and conquer algorithms in [11]. Knof [3] studied the finite 

dimensional distributions of D-valued processes nY  by the contraction method. He introduced a suitable 

complete metric space and showed convergence of all finite dimensional distributions. His results include 

Quicksort. A nice version of the Quickselect processes is used to and show the convergence in other topology to 

a limiting process Y  which is a fixed point of the map K  [8]. In our work, we use a smart approach to show the 

existence of partial sorting process via the weighted branching process. Our approach was inspired by the 

methods used for the analysis of Quickselect [8], where fixed point equations on D  were considered for the 

first time. 

The equation (2) implies the distributional equality and YY =  satisfies the fixed point equation (12). The 

family vY  is explicitly given in [8]. Also consider [9] for further details. 

This result is a probabilistic result and we obtain it via the Weighted Branching Process [12] and an explicitly 

given nice family of processes 
v

nY  indexed by n  and the binary tree. Basically we use the splitting U - rvs 

for the Y  process also for the nY  process.  

 

II. THE RECURSIVE EQUATION OF COMPARISONS 
Like in the clasical Quicksort [2], choose with a uniform distribution a pivot, split the set S  of 

numbers into the set <S  of strictly smaller ones than the pivot, the pivot and the set >S  of strictly larger ones in 

this order. Then continue recalling Quicksort always for the left list .<S  If <S  is empty continue with the next 

leftmost sublist recalling the algorithm. If <S  consists only of one element, output this number immediately and 

continue with the next leftmost list. Now define the random variable, ),( lSX  of comparisons required to sort l  

smallest elements in an array of distinct S  numbers. The random variable X  satisfies the recursive formula 

    
lIlIll IlSXISXlSXSlSX ),(1),(),(1=),( >

2

<

1

><

1   11 (4) 

for .||,1,2,= Sl   

Here 1|=|)(= < SSII  denotes the rank of the pivot after comparisons. I  means the index of the 

position it occupies in the sorted sequence and has values in },{1,2, n  with a uniform distribution. The rv I  is 

independent of all X  random variables in equation (17). The random variable ),( < SX  satisfies a similar 

recursion, where )( <SI  is independent of everything before. Continuing this way we find the distribution of 

| )|,( SSX  as the Quicksort distribution sorting S  by standard Quicksort. In the next proposition we will show 

that the distribution of ),( lSX  depends on S  only via the size n  of S  

Proposition 2.1 Let SS,  be two sets of n  different reals , and let nl 1,2,= . Then  

   .),(=),( lSXlSX LL  

Proof.  

By induction on n . It is true for 1=n  and we are done. Assume it is true for nk  , so we use the notation  

 .)),(((=)),(( kSforlSXlSX ll LL (5) 

The random variable )(=)( SISI  is uniformly distributed on  k1,2, . Let  kllkX ,1,2,
1 )),((  , 

 kllkX ,1,2,
2 )),((   be independent random variables independent of I  and with the distribution given in (5). 

Since nSSSS ><>< ,,,  then  
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Then )).1,((=)),(( lkXlSX LL  Then the statement is true for 1= kn  and therefore true for all n . 

 

Remark: 

The above Proposition is true states that the distribution of ),( lSX  depends only on S  and l . The equation 

(17) determines the distribution of ),( lSX  via the distribution for smaller sets and notice | )(|=)( SISI  
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For the distribution  of  nlnXnX nl ,)),((=),( ,1,2,=   . The rvs ,nI  njikjX
j
k

i <1,2,=,)),((
1
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independent. The rv nI  has values on },{1,2, n , ),( jX i
 has the same 

distribution as ),( jX  by recursion. We put for notational reasons (boundary conditions) )(0,0,0)(  ii XX  

for 1,2.=i  Notice 1).,(=),( nnXnnX   

 

 In our version of Quicksort we use internal randomness by picking the pivot by random with a uniform 

distribution. Like in standard Quicksort, we could instead of internal randomness also use external randomness. 

Choose as input a uniform distribution on all permutations   of order n  and pick as pivot any, for example 

always the first in the list. Now ),( X  is a deterministic function depending on the input .  Seen as a rv with 

random input   we face the same distribution as with internal randomness. The main advantage using internal 

randomness is the same distribution of X  for every input of the same seize. Alternatively we could start with iid 

random variables uniformly on [0,1]  and choose as pivot always the first element of the list. The algorithm 

itself would be deterministic, the time spend ( )= X  is a rv via the input of an iid sequence. 

From equation (6) we obtain a recursion for the expectation )),((=),( lnXElna   
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The term ),( nna  is the expectation of sorting n  numbers by Quicksort. All ),( lna  are uniquely defined by the 

above equations and the starting conditions. Martinéz [4] obtained the explicit formula  

 66)32(1)2(2=),( 1   lHlnHnnlna lnn    (7) 

 .1  nl  (Notice not for 0=n  and 0.=l ) jH  denotes the j -th harmonic number .
1

=
1= i

H
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Quicksort we obtain the well known formula .41)2(=),( nHnnna n   

 

 Martinéz argued with  Partial Quicksort ),( lnPQ , which for fixed ln,  sorts the l  smallest elements of 

a list.  For more results and versions of it, optimality and one-dimensional distributions for Partial Quicksort see 

[4]. The Quicksort process is an extension of Partial Quicksort in the sense of taking l  as a time variable. We 

find first the 1l -smallest elements, then continue this search for the l -th smallest, then 1l -th smallest and 

so on. Now to the distribution of the process ),( nX  in the limit. This is the question, how much ),( lnX  differs 

from the average ).,( lna  We suggest a normalization of ),( lnX  to obtain a non degenerate limit distribution. 

Often this is the random variables of the form  
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 Notice nY  is well defined and there are no boundary conditions besides .0 10 YY   

We extend the process nY  nicely to a process on the unit interval [0,1]  with values in the space [0,1]= DD  of 

cadlag functions (right continuous functions with existing left limits) on the unit interval. This can be done by 

linear interpolation or a piece wise constant function. We shall use the extension  
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 The process nY  is continuous at 1  and satisfies the recursion, we use 
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for .n  In short notation  
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for a suitable function .n  

If n  then nU  converges in distribution to a rv U  with a uniform distribution. We might expect that the 

process nY  converges in some sense to a limiting process [0,1]))((= ttYY  with values in D  satisfying 

something like the stochastic fixed point equation  
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 for a suitable function .  The rvs UYY ,, 21
 are independent. 1Y  and 2Y  have the same distribution as Y  and 

U  is uniformly distributed on the unit interval [0,1].  The cost function ),(= UCC  is given by  
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l
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III. BINARY ULAM-HARRIS TREES 
To ensure a high Consider the infinite Ulam-Harris tree  

n

n

NV
N


0

:=


 

be the infinite tree rooted at }{  where }{1,2,=   denotes the set of positive integers and by convention 

}{:=0   contains the null sequence  . Each ),,,(= 21 nvvvv   is called a node or vertex which we also 

write as nvvv 21 . The vertex v  is uniquely connected to the root   by the path 

.1211 nvvvvv   

The length of v  is denoted by v , thus nvv n =1  and in particularly we use 0:= . For all v  and for 

every k  define  

 








 vkv

vkvv

k

v kk <

0=

:= 1| 



 

Further we use the notations for mwww 1= ,  ,:= 2121 mn wwwvvvvw   and vvandvv :=:=   
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In our work we suppress if possible the root  .  

 

Definition 3.1 For all wv, , the prefix order   on   is given by  .=:: wvuuwv    

The node v  is called an ancestor or progenitor of w  and conversely w  is called a descendant of v . If u , 

then v  is also called a mother of w  and, conversely, w  is called a child or offspring of v . 

We further define  .: wvwvwv    

In the context of branching tree, the relation wv <  may be interpreted as, the node v  is strictly older than w  in 

terms of generations. We extend this definition to subsets of  . For all L  and v , Define  

,:: LvwwLv  V°  

  LvwwLv  :\: V  

and  

,: vwandLwvL    

.: vwandLwvL    

 We use the m -ary tree    n

n
mm   1,:=1,

0

*


. In the case that  n

n
1,2:=

0
 N

V


, the tree is called 

binary tree. Let ),,( P  be a probability space, rich enough to carry all occurring random variables in our 

work. Let ,*)(G  be a measurable semigroup ( hghgGGG *=),(,:*   associative and measurable) with a 

grave  *==*:(, ggg  ) and a neutral element e  ( egggeGg *==*:  ).  

The semigroup ,*)(G  operates transitive and measurable on the measurable space H  via HHG  :  and 

HG  is endowed with the product  -field. Let GT :  be a random variable relative to the product 

space. 

 We use the notation ),,(= 21 TTT , where GTi :  is the i -th projection of T . Let HC :  be a 

random variable with values in a measurable semigroup H . 

Let VvCT vv ),,( , be independent copies of ),( CT  on the same probability space ),,( P . We call 
v

iT , 

the weight attached to the edge ),( viv  connecting v  and vi . vC  is called the weight of the vertex v . The 

interpretation of vC  is as a cost function on a vertex v . A tuple  ),(,*),(),,(, HGCTV  as above is 

called a weighted branching process (WBP). For a weighted branching process without costs we write also 

 ,*)(,, GTV . We shall use freely other trees such as m -ary trees  *1,2, m  of all sequences in an 

appropriate sense. The interpretation of G  is as maps from H  to H . If H  has additional structure then we 

might enlarge G  to have the induced structure. 

For example if H  is a vector space or an ordered set, we may extended G  to a vector space of maps or ordered 

sets via the natural extension. 

 

Definition 3.2 Define recursively a family vvLL )(:=  of random variables GLv :  by 

.,*:=,:= NV  ivallforTLLeL v

ivvi  

We call vL  the path weight from the root   to the node v . Similarly, we define recursively for all v , the 

family of path weights from v  to vw  w
v
w

v LL )(:=  by  

                              .,*:=,:=   iwallforTLLeL vw
i

v
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v
wi

v
                                                               (14) 

 The path weight vL  has the following product representation 
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 for nvvvv 21= . Hence vL  is just the accumulated multiplicative weight along the path connecting the root   

with the node v . vL  forms the total weight of the branch starting from the root   to node v  accumulated under 

operation * of the edge weights. 

An individual or a node v  is called alive, if vL , otherwise the node is called dead. In particular all nodes 

with weight   are skipped in pictures. Define the total weight (cost) regarded up to the n-th generation by  
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 nCLR v
v

nv

n ,:=

<

                                                               (16) 

 

Because we deal only with positive values, everything will be well defined in our examples. We explain the 

forward and backward view via a weighted branching process on   for simplicity. The same argument will 

hold later for the the weighted branching process )),(,*),(),,(,( 


DDCT . Consider a weighted branching 

process )),(),,(),,(,(   CT . 

For the next sections we need the following two examples. Although they provide known results the novelty is 

the line of arguments, which can be generalized and which are the key for the Quicksort process. 

 

Example 3.1 Here we show mainly the existence of the Quicksort distribution. Consider the weighted branching 

process )))(),,1((),,,,(,({1,2}* UCUU    with U  has a uniform distribution and  

                                  ).(1ln)2(1ln21:=)( xxxxxC                                                                   (17)  

 G  is the multiplicative semi group   with the neutral element 1=e  and the grave 0.=  G  operates 

transitive on =H  by multiplication. Let VvU v ,  be independent rvs with a uniform distribution on [0,1] . 

Put   )(=,1=,= 21
vvvvvv UCCUTUT  . 

Since H  is an ordered vector space, we extend G  with the interpretation of maps to the ordered vector space 

generated by the maps. The total weighted cost v
v

m
Vv

m CLR  
<

:=  up to the 1m  generation is an 2L -

martingale and converges in 2L  and a.e. to a rv Q . The distribution of Q  is called the Quicksort distribution. 

The distribution is uniquely characterized [10] as the solution of the stochastic fixed point equation  

                     N )()(1= 21 UCQUUQQ
D

                                                                                       (18) 

with expectation 0  and finite variance. Here 
D

=  denotes equality in distribution. The random variables 

21,, QQU  are independent, U  is uniformly distributed and 21,QQ  have the same distribution as .Q  

By the a.s. convergence of vwv
w

m
Vw

v
m CLR  

<

=  the rvs  

                                               vwv
w

Vw

v CLQ 


:=                                                                                      (19) 

 exist and satisfy a.e.  

)()(1= 21 vvvvvv UCQUQUQ   (20) 

for every .Vv  Of course the distribution of 
vQ  is a solution of (18).  

Example 3.2 Convergence of the discrete Quicksort distributions [9]. The original problem concerns the 

number nX  of comparisons to sort n  distinct reals. We use internal randomness. Then for n   

21
11=

n
In

n
I

D

n XXnX    

with 
21,, XXIn  are independent, nI  has a uniform distribution on n,1,  and 

21, ii XX  have the same 

distribution as .iX  The boundary conditions are 0X  and 1X  are identical 0.  The expectation of nX  is 

).,(= nnaan  The normalized rvs 
n

aX
Y nn

n


=  satisfy the recursion  

 )(
1

= 21
1 nn

n
In

n

n
I

n
D

n ICY
n

In
Y

n

I
Y 





  

where  

n

aaan
iC inin

n
  11

:=)(  

Now the abstract embedding into a WBP with an additional parameter .n  Let H  be the set of functions 

 0:h  and G  the set 2GH   where 2G  are the functions 00:  g  satisfying 0=(0)g  and nng <)(  

for all .n  The semi group structure is given by  

),(=),(*),( 121212211 gggffgfgf   
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and the operation on H  via  gfhhgf =),(  . 

The interpretation of Ggf ),(  is as a map on H  with f  is a multiplicative factor and g  an index 

transformation. The operation *  corresponds to the convolution of maps on .H  Since H  is a vector space we 

may enlarge G  naturally to a vector space. 

Consider the binary tree V  and let VvU v ,  be independent rvs with a uniform distribution. Let  vv

n nUI =  

(upper Gauss bracket) and define the transformations on the edges 2),(1),,( vvvv  by  

v
n

vv
n

v InnJInJ  =)(1=)( 21  

))(,
)(

(=)())(,
)(

(=)( 2
2

21
1

1 nJ
n

nJ
nTnJ

n

nJ
nT v

v
vv

v
v  

 and the vertex weight  )(=)( v
nn

v ICnC . 

The random variables vwv
w

m
Vw

v
m CLR 


<

:=  converge as 0m  a.e. and in 2L  to a limit 
vR  and satisfy  

vvi
m

v
i

i

v
m CRTR  1=   

for }.{=  Nm  Notice the connection to the previous description, )(= nRY
D

n  . 

)(nRv
  converge for every Vv  in 2L  to the rv 

vQ  from the Quicksort example [?]. We shall use 

)(= nRQ vv
n   in the sequel. 

It is worth while to put the two examples together. Use }{= 00   instead of 0  in the second example 

and incorporate the first example via the value .  

For later purpose we establish a general Lemma. Let )),(),,1(=,{1,2}=( *  UUTV  be a WBP without 

costs. Let U  have a uniform distribution. Let VvnCv
n  ,,0 0  be a sequence of positive real rvs. Let 

VvX v ,0  be rvs and define  nVvX v
n ,,  by  

 
v
n

v
n

vv
n

vv
n CXUXUX   ))((1)(= 2

1
1

1  

Lemma 3.1 Assume for 2ln>p  0.sup> n
p

v

nVv
C 


 Then 

v
nX  converges as n  a.e. to 0  for all 

.Vv   

Proof. Let .sup= v
w

n
Vw

v
n LM 

 We intend to use a result of Biggins [9] 
n

M v
nln

 converges as n  to some 

a  where a  is uniquely determined by 0.=)(aI  The function ))(ln(inf=)(
0>




xmxI   is the Fenchel-

Legendre Transform of the the convex function )(ln  m  where .)(=)(  i
i

TEm 
 In our case 

.
1

1
=)(


m  The minimum of the function ))(ln(  xm    is attained at )(= x  with 

0.=
1

1
x






 We obtain 1ln=)()(ln=)(  xxxxxxI  . 

Therefore .=00=)( 1 aeaI a  
 The solution 1= a  is uniquely determined. The assumptions of Biggins 

result are satisfied. For given 2ln<<0 p  let )(= 00 vv nn  be such that for all 
vnn 0  .)( nav

n eM   

By induction we obtain  

 
vw

jn
v
w

j
Vw

n

j

v
n

v
iin

v
n CLCTCX 




  

1

0=

1  

We shall use for some 1n  sufficiently large  

.

1

10
=

1
10

0=

1
vw

jn
v
w

n

nvnj

vw
jn

v
w

nvn

j

v
n

v
iin

v
n CLCLCTCX 










    
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The first sum converges a.e. to 0  for every 1n  and .Vv  

For the second let n<0  satisfy .<  
n

 We intend to use Borel-Cantelli for the sequence 

},{= )(
j

vw
jn

v
w

j
Vw

jav
j

v
j CLeMD   

  

p
j

pja

pvw
jn

j
Vw

v
j

e

CE
DP

 )(

)(
)(







  

p
j

jpap c
e



 )2ln(   

 where c  is the finite constant 0.supsup n
p

v

nVvn
C 


 Since  <)( v

j
j

DP  the events 
v
jD  appear only 

finitely often for every .Vv  We conclude  

.<
1

10
=

1

10
=

1

10
=

 















 vw

jn

v

w
j

Vwv
j

D

n

nvnj

j

n

nvnj

vw

jn

v

w
j

Vw

n

nvnj

CLCL 1  

 The first term on the right side is arbitrary small for sufficiently large .1n  The second term converges to 0  a.e. 

if 1n  converges to .  This concludes the statement.  

 

IV. THE QUICKSORT PROCESS 
In this section we specify the Partial Quicksort process by using the weighted branching process. For the 

number of comparisons obtained by the Partial Quicksort ),( lnX , we suggest the normalization 

                                          
n

lnalnX

n

l
Y n ),(),(

:=)(


                                                                           (21) 

 Assume for simplicity that the rank of the pivot ),( lnI  is uniformly distributed random variable. The 

distribution depending only on l  and on the size of the list n , we obtain a recursion given by the following 

Lemma [10].  

 

 

Lemma 4.1  

 

)()
1

(
1

)((1)
1

=)
1

(

1

1>

2

1

1

n

l
C

I

l
Y

n

I

In

Il
Y

n

In
Y

n

I

n
Y

nI

lI

InI

lIlI

n





























1

11
 (22) 

 where  

 

.
)1,(

),(1)1,(),(1
=)(

>
n

lIa

n

IlIna

n

IIa

n

lna

n

n

n

l
C

lI

lI

n











 








1

1  (23) 

  

In the next lemma we will give an explicit formula of the cost function ),,( ilnC . For the proof we need the well 

known properties of the n -th harmonic number [1].  

Lemma 4.2 The function C  as defined in (13) has the explicit representation  

))(
1

2(1)(
1

2=),,( 111  





ninni HH
n

i
HH

n

i
ilnC )(

1

2
(2 12  




 nliil HH

n

li
  

                                ))(3()1)(
1

(1 111  


 nlnnn HHlnHiH
n

i
 

                ).
)21)((

1

)11)((

1
2

lnnlin
in





  

 Proof. From the equation above and using the properties of the n -th harmonic number we have  



Running time Analysis of Sorting Algorithm via an Asymptotic Distribution  

www.irjes.com                                                                        64 | Page 

)),(1)1,((1)1,()1,(),(1=),,(1)( >< ilinaiiaiialialnanilnCn ilil  1i=l1

6)6)22(21)(2(66)32(1)2(1= 11<1   lHliiHilHlnHnn iiillnn 1

)1)2()(2(1))4((2 <1= iniliil HininiiH    6)6()32( 1   ilHln in  

1)2()12(2= 11   nHlnHiniH nini iniil HinHliin   11 )1()2(2(2 ))3( 1 lnHln   

1)2()12(2= 11   nHlnHiniH nini inliil HinHliin   12 )1()2(2(2  

).
2

1

1

1
2)3( 3

lnli
inHln ln





   

 Let D  be the vector space of cadlag functions [0,1]:f  (right continuous with existing left limits). D  is 

endowed with the Skorodhod topology induced by the Skorodhod 1J -metric  

                               
}<

,<:|0>{inf=),(













id

gfgfd 
                                                       (24) 

 where   is the set of all bijective increasing functions [0,1][0,1]:  . We use the supremum norm 

.|)(|sup= tff
t

 The space ),( dD  is a separable, non complete metric space, but a polish space [9]. The 

 -field )(D  is the Borel- -field via the Skorodhod metric. The  -field is isomorphic to the product  -

field DA R  where A  is a dense subset of [0,1]  containing the 1.  

Let )(DF  be the space of all measurable functions X  with values in .D  For  <1 p  let )(DpF  be the 

subspace such that  

                                                      


<:=
, pp

XX                                          (25)   

 is finite. Here ,<,  p
p

   denotes the usual pL -norm for rvs. The map 
p,

  is a pseudo metric on 

).(DpF  Let ~ be the common equivalence relation  

0=)( ~ YXPYX   

and )(DFp  be the set of equivalence classes }|)({=][ YXDYX :F  intersected with ).(DpF  Then it is 

well known  

Proposition 4.1 For  <1 p  is )),((
,pp DF


 .  a Banach space with the usual addition and multiplication  

.=][][

],[=][],[=][][

,, pp fff

cffcgfgf




 

Let 


D  be the subset of all functions [0,1][0,1]: f  in D  such that there exists 1=<<<=0 10 rttt   

satisfying f  is increasing on the interval ),[ 11 itt   for ri ,1,2,=  . In the following we consider the 

composition of random variables and give some results needed in our work.  

Lemma 4.3  Let X  be a random variable with values in D  and let B  be a random variable with values in 


D . 

Then BX   is a random variable with values in D .  

Proof. Let DX : , and 


 DB : . Since for all  , 


DB )(  , then the function DBX ))((  . 

It is sufficient to show :)(tBX   is measurable for all [0,1]t . For all [0,1]t  define 

  jB j ,:  by 
 

j

jtB
B j

))((
:=)(


 .we will approximate the BX   by the random variables jBX   

using the discretization on the values 
jjj

1
,1

2
,

1
0,  . )(tB j  is a measurable for all   since  

      
,,1)[)(=,1))([)(

11








 

j

ja
tBatB j  

for all j  and [0,1]t . By the definition of jB , ))(()( tBB j    and ))((=)(lim tBB jj  . Furthermore  
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 )))(((lim=)))(((lim=)))((lim(=))(( tBXtBXtBXtBX j
j

j
j

j
j

   

Then ))((lim tBX jj   is measurable since )(tBX j  is measurable. This implies that )(tBX   is measurable 

for all [0,1)t  with respect to )( .  

 

V. MODEL DESCRIPTION 

Let 


DDG :=  and let DH := . For all Dfff 21,,  and 


Dggg 21,,  define the operation GGG :*  

by  

 
 .,=

),(*),(:=),(),,(*

12121

22112211

gggff

gfgfgfgf


 (26) 

 

where   denotes the convolution and   is the pointwise multiplication in D . For all Dhff ,, 1  and 


Dgg 1, , define the operation HHG  :  by 

  .=),(:=),,( ghfhgfhgf   

For all Dffffff  2121 ,,,,,  ,the operation *  is bilinear in the first coordinate on 


DD , 

),(*),(),(*),(=),(*),( 2121 gfgfgfgfgfgff   

).,(*),(),(*),(=),((*),( 2121 gfgfgfgfgffgf   

And for all Dhfff  ,,, 21  


Dg,  

,),(),(=),( 2121 hgfhgfhgff   

.),(),(=)(),( 2121 hgfhgfhhgf   

The tuple Ggf ),(  has the interpretation of a map HHM gf :,  acting as  

)).,((),(=),))((( , ntghntfnthM gf  (27) 

 The first coordinate f  is a space transformation and the second coordinate g  is a time and index 

transformation. The semigroup structure *  is the composition of the corresponding maps. Since H  is a vector 

space and   is a lattice, we will embed G  to maps HH  and use freely the induced structures   ,   and  . 

),()(=))((
1

,
1

,
1

,
1

, hMhMhMM gfgfgfgf  ),)((=))(( ,, hMahMa gfgf   and 

)).(()))(((=))((
1

,
1

,
1

,
1

, hMhMhMM gfgfgfgf   It is easy to see the equation (26) as follow  

))),((),,((=),)(( 11,
1

,
1

, ntghntfMnthMM gfgfgf   

 )),())((,(),(= 11 ntgghfntf   

  ))),(((),((),(= 11 ntgghntgfntf  

).,)((=
1

,
1

nthM gggff   

We notice here, the sorting partitioning strategy suggests a binary tree.  Consider the binary tree   .1,2=
N

V  

For   nvvvv n ,= 21   and for m , nm  , mvvvmv 21=|  denote to the m -th coordinate of v . Let 

  V vU v ,0,1:  be independent and identically uniformly distributed random variables on the unit 

interval  0,1 . Let VvQv ,  be the random variable has a limiting Quicksort distribution. 

Define a map GT v
i : , the weights on the edges  1,2,),,(  ivviv   by 

  VvallforBAT v

i

v

i

v

i ,:=  

and  ,0,,= 21
vvv TTT . For all Vv , define the following parameters 

,:=)(
>1

v

tvU

v UtA   

),(1:=)(2
v

tvU

v UtA 


  

=)(=0:=)( 43 tAtA vv
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
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


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 0,1

2 0
1

:=)(
















t

v

U

Ut
tB  

  .=)(=0:=)( 43 tBtB vv
 (28) 

 

 

Define a map HCv : , the vertex weight by  

,,.)(:= 1vv

tvU

vv QUUCC


   (29) 

 where C  is given in (23). Here   VvCBA vvv ,,,  in terms of vU  are iid copies of  CBA ,, . The edge 

weight 
v

iT  attached to the edge  viv,  is given by  v
i

v
i BA , . The tuple  ),,*,(,),(,  HGCT v
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VV  is a 

weighted branching process. Consider the weighted branching process as given above and for all v , define 

the sequence  
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n
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v
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 where the family of path weights Vw

v

w

v LL )(:=  from the node v  is given recursively by (14).  

Lemma 5.1  Let U  be a uniformly distributed random variable on  0,1  and C  defined as in (29). Then for all 
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Lemma 5.2  The random variables 
v
nR  defined as in (30) satisfies the backward recursion  
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m

v

i

i

v
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2

1=

=  

for all v  and m .  

Proof. The sum 
v
mR  is well defined and by equations (30), we have  
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 The connection between the operator K  and the weighted branching process nR , in the case of the Partial 

Quicksort is given by the following Corollary. 

Corollary 5.1  Let the starting measure 0  be the point measure on the function D0  identical 0 . Then the 

random variables nR  defined as in (30) satisfies  
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 where 
i
nR  denotes the the random variable nR  for the tree with root i . The distribution of nR  is )( 0

nK .  

Proof. In the positive case all nR  and n fold iterates )( 0
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 To prove the distributional result on nR  we use the mathematical induction on n . The induction base case 

when 1=n  is true since 
CR =1  has the distribution )( 0K . For the inductive step n  to 1n  argue by the 

backward recursion  
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 The equation (32) defines the total weight in the n-th generation. Our interest concentrates on the total weight 

(cost) regarded up to the n-th generation. From equations (32) and (16), we have  
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2
nS  are the nS  random variable for the tree with root i . Using the equation (33) and 
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 Lemma 5.3  Let   vnS v
n ,,  be as above. Then for all n , 0=)(

nSE  and )(
nSVar  converges 

exponentially fast to 0 , as n .  

Proof. Notice nnn

v

n SS )(=)( 
D

. By equation (35) 

2

2,1

2

2,
=

DniDn STS  
















 

2
2

1
1

1< )
1

()(1)(sup=
U

Ut
SU

U

t
USE nUtnUt

t

  

                      .)
1

()(1)(sup=

2
2

1

2
1

1< 



































U

Ut
SU

U

t
USE nUtnUt

t

  

 All mixed terms are zero. The first term is  
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Lemma 5.4 For fixed [0,1]t  and n , ))(( tRVar n  converges exponentially fast to 0 , as n .  

Proof. The random variables ,jS  are pointwise well defined and measurable. By Theorem 5.3 we have  
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 By the Cauchy-Schwarz inequality, )()( tStS ji  is integrable. For ji,  and ji  , define  
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By conditional expectation we have for ji     

    ijiji tStSEEtStSE |)()(=)()(    0=|)()(= iji tSEtSE   

Therefore    2
1

0=

2 ))((=))(( tSEtRE i

n

i

n 


 

And therefor Lemma 5.3 finishes the proof of the following main result.  
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Theorem 5.1  Let )),(,*),(),),,((,( 21 HGCTTV  be the weighted branching process defined as above. Then 
v
nR  

converges uniformly as n  almost everywhere in D  to a random variable vR  for all v . The family 

vRv ,  satisfies  
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 almost everywhere. Moreover, for every 1>p  holds  
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 and Q  is a random variable with the Quicksort distribution.  
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