International Refereed Journal of Engineering and Science (IRJES)
ISSN (Online) 2319-183X, (Print) 2319-1821
Volume 6, Issue 8 (August 2017), PP.55-69

Running time Analysis of Sorting Algorithm via an Asymptotic
Distribution

Mahmoud Ragab
Mathematics Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
Corresponding author: *Mahmoud Ragab
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l. INTRODUCTION

Classical analyses of sorting algorithms make the efficiency is the general purpose. The efficiency of
the good algorithm depends on many various factors such as , software and hardware use. More recently
researchers have recognized that on modern computers the cost of access- ing memory can vary dramatically
depending on whether the data can be found in the first-level cache, or must be fetched from a lower level of
cache or even main memory. The efficiency of an algorithm using a poor code, is differ than using a good code,
in addition the operating system itself. The running time of executing sub-arrays is particularly important for
sorting because the inner-loops of most common sorting algorithms consist of comparisons of items to be sorted.
Thus, the expected of these comparisons to do the job is critical to the performance of sorting algorithms.
Throughout this paper we ignore all aspects of these factors unless the the behavior the sorting scheme whose
outcome depends on a number of comparisons needed to the sorting algorithm in its input.

Selecting a good pivot is important. A poor choice of a pivot could give a running time quadratic
proportional to the number of elements squared. Therefore selecting a good pivot greatly improves the speed of
the Quicksort algorithm. Many people just use the first element in the list as the pivot, however this causes the
sort to perform very badly if the data is already sorted. There are several methods to avoid the worst case in
practical solutions. Unix uses the median of the first the last and the element in the middle. Therefore, when
choosing the pivot we need to be more careful. For example, when Quicksort is used in web services, it is
possible for an attacker to intentionally exploit the worst case performance and choose data which will cause a
slow running time or maximize the chance of running out of stack space. The choice of a good pivot greatly
improves the speed of the Quicksort algorithm.

The simplest way is to choose an arbitrary element say the first for example as pivot, this does not
avoid the worst case. Instead of using the first element, a much better method is called median of three
Quicksort. In that method choose the pivot of each recursive stage as the median of a sample of three elements.
Other method is to take tree samples, each sample contain 3 elements, take the median for each sample and
choose the median of three medians as a pivot,this method called pseudomedian of 9 Quicksort.

To make sure to avoid any kind of presorting it is better to use the median element of the first, middle,
and the last element as a pivot. To optimize the algorithm, for an array smaller than 7, the pivot is chosen as the
middle key or sort with the standard Quicksort, for mid-sized arrays( for an array of size between 8 and 39) the
pivot is chosen using the median-of-three Quicksort, and finally for larger arrays use the pseudomedian of 9
Quicksort. This helps some but unfortunately simple anomalies happens [1].

Some recent papers considered a version of Quicksort algorithgm called the random median Quicksort.
For a random variable k, the pivot element has been selected to be the median of 2k+1 elements. In each step
recursively recall of the algorithm. Later, many researchers has received the interest of the visualization of
multi-pivot Quicksort in accordance with Yaroslavskiy proposed the duality pivot process which outperforms
standard Quicksort by Java JVM. After that, this algorithm has been explained in terms of comparisons and
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swaps by Wild and Nebel [6]. Not long ago, a new version from Dual-pivot Quicksort algorithm has some other
number k of pivots. Hence, we discuss the idea of picking k pivots, k = 1,2,...,n by random way and splitting
the list simultaneously according to these. The modified version generalizes these results for multi process. We
show that the average number of swaps done by Multi-pivot Quicksort process and a special case. Moreover, [7]
obtained a relationship between the average number of swaps of Multi-pivot Quicksort and Stirling numbers of
the first kind.

Let X, be the number of comparisons used by Quicksort to sort a list of size n. The random variable
X, is basically proportional to the running time of Quicksort which depends (a little bit) on the implementation

and computer hardware. The average number E(X,) of comparisons [1] is E(X,) =nlInn. The first complete
running time analysis for a random divide and conquer was for Quicksort [13]. The random variable
= Xa—E(Xy)

n

converges in distribution to a random variable Y , which distribution is characterized as the unique
solution of the stochastic fixed point equation

D
Y =UY'+(1-U)Y? +C(U)
with expectation 0 and finite variance. Here U is uniformly distributed on [0,1] and U YLY? are independent.

Yn

Y! and Y2 have the same distribution and C is given by
C(x):=2xInx+2(1-x)In(1—x) +1, xe[0,1].

Quickselect or FIND, introduced by Hoare [2] in 1961 is a search algorithm widely used for finding the
| -th smallest element out of n distinct numbers. Most of the mathematical results on the complexity of
Quickselect are about expectations or distributions for the number of comparisons needed to complete its task
by the algorithm [10]. A pivot is uniformly chosen at random from the available n elements, and compares the
n—1 remaining elements against it.

Let X, (k) be the number of comparisons needed to find the I -th smallest out of n. The running time of this
algorithm is always a random variable either by random input or internal randomness. The expectation of
X, (k) is explicitly known [1]

E(X, (k) =2(n+3+(n+)H, - (k+2)H, —(n+3—-K)H 1)
for 1<k <n,and H, denotes the k -th harmonic number. An asymptotic approximation as n— oo is

—E(Xr: ®) _ 5 _tint—20-t)InL1)

for Oﬁt:%£1 . The asymptotic variance Var(X,(k)) was derived using combinatorial and generating

function methods [10]. Furthermore, Roesler [9] studied the limiting distribution of X, (k) or X, asa process.
A major tool are fixed point equation and the contraction method for operator K like
D
K(u)= Y AY, +C
ieN
The random variables (A, B,C),Y;,ieN are independent and the random variables Y; have the same
distribution g . In a more general form of (1), Knof and Roesler [3] considered general recurrence

D
Y =AY, 0B +C"
ieN
on the set D of cadlag functions on the unit interval [0,1]. Here ((A",B!",1");,C"),YJ}, i,j,keN are all
independent. Yij ,A",C" have values in the set D . The random variables B;' take values in Dy, the set of all

maps from the unit interval to itself and piecewise increasing.
Under some assumptions they showed the existence of solutions of (2) via the weighted branching process, and

Y" converges in distribution to Y satisfying

YEZAYioBi+C

ieN
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The contraction method invented for the analysis of Quicksort, proved to be very successful for other
algorithms [5, 11]. The contraction method is a general method to derive convergence in distribution of
recursive structures. This method was pioneered by Roesler [11] and later by Neininger [5]. This method was
explained in the context of several divide and conquer algorithms in [11]. Knof [3] studied the finite

dimensional distributions of D-valued processes Y" by the contraction method. He introduced a suitable
complete metric space and showed convergence of all finite dimensional distributions. His results include
Quicksort. A nice version of the Quickselect processes is used to and show the convergence in other topology to
a limiting process Y which is a fixed point of the map K [8]. In our work, we use a smart approach to show the
existence of partial sorting process via the weighted branching process. Our approach was inspired by the
methods used for the analysis of Quickselect [8], where fixed point equations on D were considered for the
first time.

The equation (2) implies the distributional equality and Y =Y satisfies the fixed point equation (12). The

family YV is explicitly given in [8]. Also consider [9] for further details.
This result is a probabilistic result and we obtain it via the Weighted Branching Process [12] and an explicitly

given nice family of processes Y, indexed by neN and the binary tree. Basically we use the splitting U - rvs
for the Y process also for the Y, process.

1. THERECURSIVE EQUATION OF COMPARISONS
Like in the clasical Quicksort [2], choose with a uniform distribution a pivot, split the set S of

numbers into the set S_ of strictly smaller ones than the pivot, the pivot and the set S, of strictly larger ones in
this order. Then continue recalling Quicksort always for the left list S_. If S_ is empty continue with the next
leftmost sublist recalling the algorithm. If S_ consists only of one element, output this number immediately and
continue with the next leftmost list. Now define the random variable, X(S,l1) of comparisons required to sort |
smallest elements in an array of distinct |S| numbers. The random variable X satisfies the recursive formula

(X(S.0) = (8| =1+ 30 XA (S 1)+, (X A8, 1 =)+ X (S, 1= D)} @
for 1 =1,2,...,|S|.

Here | =1(S)=|S.|+1 denotes the rank of the pivot after comparisons. | means the index of the
position it occupies in the sorted sequence and has values in {1,2,...,n} with a uniform distribution. The rv | is
independent of all X random variables in equation (17). The random variable X(S.,:) satisfies a similar
recursion, where 1(S_) is independent of everything before. Continuing this way we find the distribution of
X(S,|S|) as the Quicksort distribution sorting S by standard Quicksort. In the next proposition we will show
that the distribution of X (S,l1) depends on S only via the size n of S

Proposition 2.1 Let S,§ be two sets of n different reals, and let 1 =1,2,---n. Then

L(X(S.1))=L(X(5.1)).
Proof.

By induction on n. It is true for n =1 and we are done. Assume it is true for k <n, so we use the notation
L(X(S,1)), =L((X(S1)), for |s|<k.(5)

The random variable 1(S)=1(S[) is uniformly distributed on {1,2,--k}. Let (X'(k,)icpz.k}:

(Xz(k,l)),e{lyzy_’k} be independent random variables independent of | and with the distribution given in (5).

Since |S.|,|S5,|S<|,Ss| <n then

L(X*(S., D), = L((X(S., 1)), and L(X'(S,, 1), =L((X (S, D),

Now let |S| = |§| =n+1. Then

k+1

L(X(S,0), = 2 P =i)L(k =1+ X (S, 1) + 1 (X (S, =1) + X*(S,., 1 =),

i=1
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k+1
=3P =i)L(k =1+ X (i =1,1) + i (X (-1, -1)+ X2 (=i, 1 -i)),

i=1

= kZ%P(I =i)L(k —1+1_ X (S, 1) + by (X1 5.,i=1) + X (S, 1 -i)),
:L_(X(§,I)),.

L(X*(S, 1 =1)) =L(X*(S.|. 1 -1)),
and

L(X?(S.,1— 1)) =L(X2(S.|,1-1)).

Then L(X(S,1)) =L(X(k +1,1)). Then the statement is true for n=k +1 and therefore true for all neN.

Remark:
The above Proposition is true states that the distribution of X (S,I) depends only on |S| and | . The equation

(17) determines the distribution of X (S,I) via the distribution for smaller sets and notice 1(S)=1(S]|)

X(n,~)z(n—1+]1<|nXl(ln—l,l)+112,n(X1(In—1,In—1)+X2(n—In,I—In)))| (6)
For the distribution of X(n,)=(X(M1))jz, .. NeN . The rvs I, (Xi(j,k)),{;%,izl,z,j<n are
independent. The rv 1, has values on {1,2,...,n}, X'(j,) has the same

distribution as X (j,)) by recursion. We put for notational reasons (boundary conditions) Xi(-,O)EOE Xi(O,-)
for i =1,2. Notice X(n,n) = X(n,n-1).

In our version of Quicksort we use internal randomness by picking the pivot by random with a uniform
distribution. Like in standard Quicksort, we could instead of internal randomness also use external randomness.
Choose as input a uniform distribution on all permutations = of order n and pick as pivot any, for example

always the first in the list. Now X (r,") is a deterministic function depending on the input z. Seen as a rv with
random input = we face the same distribution as with internal randomness. The main advantage using internal
randomness is the same distribution of X for every input of the same seize. Alternatively we could start with iid
random variables uniformly on [0,1] and choose as pivot always the first element of the list. The algorithm
itself would be deterministic, the time spend (= X) is a rv via the input of an iid sequence.

From equation (6) we obtain a recursion for the expectation a(n,1) = E(X(n,I))

a(n,I) = n—1+%2(a(j -1 j-1)+a(n-j,l- j))+% Zn:a(j -1

j=1 j=I+1
The term a(n,n) is the expectation of sorting n numbers by Quicksort. All a(n,l) are uniquely defined by the
above equations and the starting conditions. Martinéz [4] obtained the explicit formula
a(in,)=2n+2(n+1)H, -2(n+3-1)H,,,_, —61+6 (7)
. . . i1
1<lI<neN. (Notice not for n=0 and 1=0.) H; denotes the j-th harmonic number H; = 2::1?. For

Quicksort we obtain the well known formula a(n,n) = 2(n+1)H, —4n.

Martinéz argued with Partial Quicksort PQ(n,l), which for fixed n,l sorts the | smallest elements of
a list. For more results and versions of it, optimality and one-dimensional distributions for Partial Quicksort see
[4]. The Quicksort process is an extension of Partial Quicksort in the sense of taking | as a time variable. We
find first the |1 —1-smallest elements, then continue this search for the I -th smallest, then |+1-th smallest and
so on. Now to the distribution of the process X (n,) in the limit. This is the question, how much X (n,l) differs
from the average a(n,l). We suggest a normalization of X(n,l) to obtain a non degenerate limit distribution.
Often this is the random variables of the form
Yn(l;l) _ X(n,1)—a(n,l)

n n

®)
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-1 . .
for 1=1,...,n and Y,(1) :Yn(nT) satisfy the recursion, n>1

I E In_l 1 I In_ _ n — n
[Yn(ﬁ)jwén—(C(n,l,ln)+L+K.n D B, (YR (Y e o

c(n,l,i) = %(n—l+ La<i @G =11 +1)+ |,y5a( —1,i 1) +],15; @(0 ~1,i 1) +a(n—i,1 +1-i)

Notice Y, is well defined and there are no boundary conditions besides Y, =0=Y;.
We extend the process Y, nicely to a process on the unit interval [0,1] with values in the space D = D[0,1] of

cadlag functions (right continuous functions with existing left limits) on the unit interval. This can be done by
linear interpolation or a piece wise constant function. We shall use the extension

Lnt]
Y, (t):=Y, (—) ©)
The process Y,, is continuous at 1 and satisfies the recursion, we use U, = I
n
D
Yo =(C(n,Lntl1,)+ Lun Y. _1( F () +(1——)Y
for neN. Inshort notation
D
Yn :¢n(Un’(Yl})k<nl(Yk2)k<n) (10)

for a suitable function ¢,,.

If n—oo then U, converges in distribution to a rv U with a uniform distribution. We might expect that the
process Y, converges in some sense to a limiting process Y = (Y (t));gpq; With values in D satisfying
something like the stochastic fixed point equation

Y 5(L<UUY1(5) 1, (UY1(1>+(1—U)Y2(%»+C(u,t»t w)

Yg(p(U,Yl,Yz) (12)
for a suitable function ¢. The rvs YLYZ U are independent. Y* and Y2 have the same distribution as Y and
U is uniformly distributed on the unit interval [0,1]. The cost function C =C(U,") is given by

Cut)y=Cu)+2],((1-1t) In(l—t) —(1-uwiIn(-u) -u-t)Inu-t)—(1-u)) (13)

and is the limit of C(n,l,i) with |——> t,— —> u,[8].

1. BINARY ULAM-HARRIS TREES
To ensure a high Consider the infinite Ulam-Harris tree

V=[N
neN0

be the infinite tree rooted at {¢} where N ={1,2,..} denotes the set of positive integers and by convention
N° :={¢} contains the null sequence ¢ . Each v =(v;,V,,...,V,) €¢ is called a node or vertex which we also
write as  vV,...v,. The wvertex v is uniquely connected to the root ¢ by the path
DoV DV, > VLY.

The length of v is denoted by [v], thus |v;---v,| =n and in particularly we use |¢[:=0. For all veg and for
every k e N define

P k=0
Vi =V k<
v k=>|v

Further we use the notations for w=w;...W,,, W:=VVy...V,WW,...W,,, and &v:=v and v¢:=v
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In our work we suppress if possible the root ¢ .

Definition 3.1 For all v,wec¢ , the prefix order ©° on ¢ isgivenby v wi=3Jueg :wu=w.

The node v is called an ancestor or progenitor of w and conversely w is called a descendant of v. If ueN,
then v is also called a mother of w and, conversely, w is called a child or offspring of v.

We further define V< WiV WAV # W.

In the context of branching tree, the relation v <w may be interpreted as, the node v is strictly older than w in
terms of generations. We extend this definition to subsets of ¢ . Forall Lc ¢ and veg , Define

V’LiadweV:ivwel,
v=<L:=3dweV\{g}:vwel

and
L°vie3dwelL and wev,

L<vie3dwelL and w=<v.

We use the m-ary tree ,...m = 1,...m\". In the case that V := 1,2 " the tree is called
neN neN
€Ny No

binary tree. Let (Q,A,P) be a probability space, rich enough to carry all occurring random variables in our
work. Let (G,*) be a measurable semigroup (*:GxG — G,(g,h) = g*h associative and measurable) with a
grave A,(VgeA:A*g=A=g*A )andaneutral element e (VgeG:e*g=g=g*e).

The semigroup (G,*) operates transitive and measurable on the measurable space H via ®:GxH —H and

GxH is endowed with the product o -field. Let T:Q —GN be a random variable relative to the product
space.

We use the notation T =(T;,T,,---), where T; :QQ— G is the i -th projection of T. Let C:Q—>H be a
random variable with values in a measurable semigroup H .

Let (TV,CV),V € V, be independent copies of (T,C) on the same probability space (Q,A,P).Wecall T;",
the weight attached to the edge (v,vi) connecting v and vi. C" is called the weight of the vertex v. The
interpretation of C" is as a cost function on a vertex vec . A tuple (V, (T,C),(G,»),(H ,®)) as above is
called a weighted branching process (WBP). For a weighted branching process without costs we write also
(V,T,(G,*)). We shall use freely other trees such as m-ary trees {l,2,--~m}* of all sequences in an

appropriate sense. The interpretation of G is as maps from H to H . If H has additional structure then we
might enlarge G to have the induced structure.

For example if H is a vector space or an ordered set, we may extended G to a vector space of maps or ordered
sets via the natural extension.

Definition 3.2 Define recursively a family L:=(L,),.. of random variables L, :QQ -G by
L,:=e L, =L *T" forallveV,ieN
We call L, the path weight from the root ¢ to the node v. Similarly, we define recursively for all veg , the
family of path weights from v to ww L :=(Ly)ye. by

s=e Ly =L, ™ forall weg,ieN (14)
The path weight L, has the following product representation

n-1

V,

=T¢ *Tvl *TV1V2 *'“*Tvlvzmvn—l = T Ik 15
L iboV2 V3 Vn H Vk+1 (15)

for v=vyv,---v,. Hence L, is just the accumulated multiplicative weight along the path connecting the root ¢

with the node v. L, forms the total weight of the branch starting from the root ¢ to node v accumulated under

operation * of the edge weights.
An individual or a node v is called alive, if L, #A, otherwise the node is called dead. In particular all nodes
with weight A are skipped in pictures. Define the total weight (cost) regarded up to the n-th generation by
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Ry:= Y L,®CY, neN (16)

[vj<n

Because we deal only with positive values, everything will be well defined in our examples. We explain the
forward and backward view via a weighted branching process on P * for simplicity. The same argument will
hold later for the the weighted branching process (g, (T,C),(D,*),(D+,®)) . Consider a weighted branching

process (¢ ,(T,C),(P*,),(P,)).

For the next sections we need the following two examples. Although they provide known results the novelty is
the line of arguments, which can be generalized and which are the key for the Quicksort process.

Example 3.1 Here we show mainly the existence of the Quicksort distribution. Consider the weighted branching
process ({1,2},(P P ,),((U,1-U),C(U))) with U has a uniform distribution and
C(x):=1+2xInx+2(1—x) In(1-x). an

G is the multiplicative semi group P with the neutral element e=1 and the grave A=0. G operates
transitive on H =P by multiplication. Let U",v eV be independent rvs with a uniform distribution on [0,1] .
Pput T,'=U", T)=1-U", C'=C@U").

Since H is an ordered vector space, we extend G with the interpretation of maps to the ordered vector space
generated by the maps. The total weighted cost R, :=Z L,C" up to the m—1 generation is an L,-

VEV<m

martingale and converges in L, and a.e. to arv Q. The distribution of Q is called the Quicksort distribution.
The distribution is uniquely characterized [10] as the solution of the stochastic fixed point equation

D
N Q=UQ, +(1-U)Q, +C() (18)
D
with expectation 0 and finite variance. Here = denotes equality in distribution. The random variables

U,Q;,Q, are independent, U is uniformly distributed and Q;,Q, have the same distribution as Q.
vV Vv vw
By the a.s. convergence of R, = ZW v L,C™ thervs

Vem
Q'=> L™ (19)
weV
exist and satisfy a.e.
Q"=U"Q"+(1-U"Q"+CU") (20)
for every v eV. Of course the distribution of Q" is a solution of (18).
Example 3.2 Convergence of the discrete Quicksort distributions [9]. The original problem concerns the
number X, of comparisons to sort n distinct reals. We use internal randomness. Then for ne N
D
Xp=n-1+X{ 1+X3,

with 1,,X*,X? are independent, I, has a uniform distribution on 1,...,n and X, X? have the same
distribution as X;. The boundary conditions are X, and X, are identical 0. The expectation of X, is

. Xp—a . .
a, =a(n,n). The normalized rvs Y, = —"—" satisfy the recursion
n

1

Dl — |
Z'n 1
Yn= Y4+

n n

n

n . Yn2—ln +Cn(|n)

where

. ._n-l-a,+a_+a,;

Coli):= -

Now the abstract embedding into a WBP with an additional parameter neN. Let H be the set of functions
h:Ny —>P and G the set HxG, where G, are the functions g:N, — N, satisfying g(0) =0 and g(n)<n
for all neN. The semi group structure is given by

(f1.9)*(f2,9,) =(f1f,00;,0,00)
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and the operationon H via (f,g)eh= fhog.
The interpretation of (f,g)eG is as a map on H with f is a multiplicative factor and g an index

transformation. The operation * corresponds to the convolution of maps on H. Since H is a vector space we
may enlarge G naturally to a vector space.

Consider the binary tree V and let U",v eV be independent rvs with a uniform distribution. Let |;\1/ = |_nU V—|
(upper Gauss bracket) and define the transformations on the edges (v,v1), (v,v2) by

JM=17-1 J3(n)=n-1,

T1 ( ) (‘]1 (n) (n)

and the vertex weight CY(n)=C, ().

The random variables R}, := Z Lye C™ convergeas m—0 a.e.and in L, toa limit R}, and satisfy

WeV<m
\ _2 :-I-v i \
Rm - i e Rm_l+C

I T (n)=(2

32 (M)

for meN=N w{ec}. Notice the connection to the previous description, Y, 2 R,(n).
Ry (n) converge for every veV in L, to the rv Q" from the Quicksort example [?]. We shall use
Qy =RY(n) inthe sequel.
It is worth while to put the two examples together. Use N_0 =Ng W{oc} instead of N, in the second example
and incorporate the first example via the value oo.
For later purpose we establish a general Lemma. Let (V ={1,2},T = (U,1-U), (P,,)) be a WBP without
costs. Let U have a uniform distribution. Let 0<C),neNg,veV be a sequence of positive real rvs. Let
Xg,VeV bervsand define X;,veV,neN by

Xy = U X)) v (L-U")X%) +Cy
Lemma 3.1 Assume for p>1In2 oo >sup,,, HC,‘{

—>, 0. Then X, converges as n— o a.e.to 0 forall
p

veV.

v v . o InM
Proof. Let M =sup,,., L,. We intend to use a result of Biggins [9] converges as n—oco to some
n n

aeP where a is uniquely determined by I(a)=0. The function 1(x) =inf (Inm(a)—x«) is the Fenchel-
a>0

Legendre Transform of the the convex function P, > @ — Inm(«) where m(a) = Ezi N(Ti)”‘. In our case
€

1 - . . . .
m(a)——l. The minimum of the function P_>ar (Inm(a)—Xea) is attained at o =a(x) with
a+

—1—x 0. We obtain 1(x) = In(—x) —xa(x) = Inx+x-1.
a+l

Therefore 1(a)=0<>0=e"?+a. The solution a=-1 is uniquely determined. The assumptions of Biggins

result are satisfied. For given 0 <& < p—In2 let ny = n¥(w) be such that for all n>ny MY <e@+en,
By induction we obtain
n-1
XY <C?+v,T'C} 1_ZVW6V LLCo;

j=0

We shall use for some n, sufficiently large
novnl—l
Xy <CZ+vTYCY, < Z LLCo, + Z LyCors.

j= novn1
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The first sum converges a.e. to 0 for every n, and veV.

For the second let 0 < g, satisfy an < co. We intend to use Borel-Cantelli for the sequence

DY ={M] <e®)], Vi, LCri > &}

LOHEDY A

—(a+e)pj . p
Wer € gj

< e(In 2+ap+ep) j L
&y

where ¢ is the finite constant sup, ol —, 0. Since ZJP(D}’) <o the events D]—’ appear only

finitely often for every v eV We conclude

Z Viey, L,Cr Za+ Zl Viey, L.Co <oo
j= nOvn1 j= novn1 j= novn1
The first term on the right side is arbitrary small for sufficiently large n;. The second term convergesto 0 a.e.
if n, converges to oo. This concludes the statement.

V. THE QUICKSORT PROCESS
In this section we specify the Partial Quicksort process by using the weighted branching process. For the
number of comparisons obtained by the Partial Quicksort X (n,l), we suggest the normalization
Yn(l_) = X(nal)_a(nvl) (21)
n n

Assume for simplicity that the rank of the pivot I(n,I) is uniformly distributed random variable. The
distribution depending only on | and on the size of the list n, we obtain a recursion given by the following
Lemma [10].

Lemmad4.l
nol -1, n—1_ ., 1-1
Y ():1|<|(1|<| 7Y1| 1(1)"‘ Yz I()j
n n n-—1 (22)
| -
+1,, Y'l(f) c" ( )
where
a v _n=1 a(n,l) a(l-1,1-1) a(n-1,1-1)
C(H)_T_ n +1'S'[ n " n j (23)
i1, a(l—l,l).
n

In the next lemma we will give an explicit formula of the cost function C(n,l,i). For the proof we need the well
known properties of the n -th harmonic number [1].
Lemma 4.2 The function C as defined in (13) has the explicit representation

. i i i+2-1
C(n,',l) =2 (Hi - Hn+l)+2(l_ )(Hn+1—i n+1) +21< (_ (Hi+2—l - Hn+l)
n+1 n+1 +1

i .
_(1_m)(Hn +1_|)_ Hn+1 +(n+3_|)(Hn+l—l - Hn+l)

. 1 1
-n+i—-2+ - - ).
(n+D)(i+1+1) (n+)(n+2-1)

Proof. From the equation above and using the properties of the n -th harmonic number we have
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(n+1)C(n,1,i)=n—-1-a(n, 1) +1_ali —1,1) +1=ia(i —1,i —1) + 1, (@l —1,i 1) +a(n —i,1 —i))

=—n-1-2(n+1)H, +2(n+3-1)H,,, , +61 -6+1_,(2(1-1)+2iH,, —2(i+2—-1)H,, — 61 +6)
+-i iH_ 43 -1) + | @(n—i)+2(n—i+1)H, ;) —2(n+3-1)H ., —6(1 —i)+6

=2iH; +2(n+1-i)H 1 —2(n+DH g +n+1 420 (—n+i—-2—([+2-DH;; —(n+1-)H, 4 +(N+3-DH, .. )

=2iH; +2(n+1-i)H, i —2(0+DH 3 +n+1 +2; (—n+i—-2—(+2—-)H;, o, —(N+1-)H 1

1 1
il n+2—I)'
Let D be the vector space of cadlag functions f :[0,1] — P (right continuous with existing left limits). D is
endowed with the Skorodhod topology induced by the Skorodhod J, -metric

d(f,g)=inf{e>0|31eA:|f-goi| <e,

+(N+3-DH 3, —n+i—2+

4 —id] < } @

where A is the set of all bijective increasing functions 1:[0,1] —[0,1]. We use the supremum norm
|| f ||w =sup, | f(t)|. Thespace (D,d) is a separable, non complete metric space, but a polish space [9]. The
o -field o(D) is the Borel- & -field via the Skorodhod metric. The o -field is isomorphic to the product o -
field R* M D where A is a dense subset of [0,1] containing the 1.
Let F(D) be the space of all measurable functions X with values in D. For 1< p<oo let F (D) be the
subspace such that

I, =XL,], <o @

is finite. Here || . ||p, p < oo, denotes the usual Lp-norm for rvs. The map || ”m,p is a pseudo metric on

F,(D). Let ~ be the common equivalence relation
X~Y <P(X#Y)=0
and F,(D) be the set of equivalence classes [X]={Y €F(D)[ X :Y} intersected with F (D). Then it is

well known
Proposition 4.1 For 1< p < is (F, (D), || . ||w p) a Banach space with the usual addition and multiplication

[fl1+[9]=[f +g]l, c[f]=[cf],
ICEICeL., =0t -
Let Dy be the subset of all functions f :[0,1]—[0,1] in D such that there exists 0=t, <t <---<t =1

satisfying f is increasing on the interval [t,_;,tj) for i=1,2,---,r. In the following we consider the

composition of random variables and give some results needed in our work.
Lemma4.3 Let X bearandom variable with values in D and let B be a random variable with values in Dy .

Then X oB is arandom variable with values in D .
Proof. Let X :QQ— D, and B:Q— D, . Since for all @ Q, B(w) € Dy , then the function (X cB)(@w)eD.

It is sufficient to show XoB(t):QQ—>P is measurable for all te[0,1]. For all te[0,1] define
Bj:Q2—>P,jeN by B;(w) ::M.We will approximate the X oB by the random variables X o B;
J

using the discretization on the values Oigl—1 . BJ- (t) is a measurable for all w e Q since
] J

(B, qa 1) = (B(t)){[@,l)] cA,

forall jeN and t €[0,1]. By the definition of B;, B;(w)>B(w)(t) and lim;B;(w) = B(w)(t) . Furthermore
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X oB(@)(t) = X(limBj(@)(1)) = lim X (B («)(t)) = lim(X © B; (@)(t))
i i j

Then limj_. (X ©Bj(t)) is measurable since X oB;(t) is measurable. This implies that X o B(t) is measurable
for all t €[0,1) with respectto B(P).

V. MODEL DESCRIPTION
Let G:=DxD; and let H:=D. Forall f,f,f,eD and g,9;,9, € D+ define the operation *:GxG -G

by
*((f17gl)l(f2’g2)):

=
where o denotes the convolution and - is the pointwise multiplication in D. For all f,f;,heD and
d,9; € Dy, define the operation ®:GxH —H by
®((f,g),h):=(f,g)®h=f-hog.
Forall f,f;,f,, f', f/, f; € D ,the operation * is bilinear in the first coordinate on Dx Dy,

(fy+f2,9)*(f'.9") = (f,9)* (', 9") + (f2, 9)*(f'.9)

(f.9)*((f,+ f2,9) = (f,9)*(f,9)+(f,9)*(f2.9").
And forall f,f/,f;,heD g,eD,

(fy+f,,9)®h=(f,g)®h+(f;,9)®h,
(f.9)®(h +hy) =(f,g)®h +(f,g)®h,.
The tuple (f,g) G has the interpretation of amap M¢ 4 :H — H acting as
(Mg (M)(t,1) = f (&, Mh(g(t,n)).
The first coordinate f is a space transformation and the second coordinate g is a time and index
transformation. The semigroup structure * is the composition of the corresponding maps. Since H is a vector
space and P is a lattice, we will embed G to maps H" and use freely the induced structures + ,- and v .
(Mg +My g )N =M (N)+M g (), @ (M )(h)=(a-M;  )(h), and
(M¢qVvM fl’gl)(h) =(M¢ g)(h) v(M .0, (h)). It is easy to see the equation (26) as follow
Mg oMy g (N(EN) =My g (fi(tn),h(g;(t )
= £(tn)-(f,h(g))(g ()
= f(t,n) f,(g(t, )h(g, (g (t, n)))
=M f-f1°9,0,°9 (h)(t’ n)-

We notice here, the sorting partitioning strategy suggests a binary tree. Consider the binary tree V = {1,2}N.
For v=wv;v,---v, eg,neN and for meN, m<n, v|m=wV,---v,, denote to the m-th coordinate of v. Let

(f1,91)*(f5,92)
fi-f3001,050 91)-

u:Q- [O,l],v €V be independent and identically uniformly distributed random variables on the unit
interval [0,1]. Let Q",V € V be the random variable has a limiting Quicksort distribution.
Define amap T;' : QQ — G, the weights on the edges (v,vi),vec ,i<{l,2} by
T = (AV, Biv) forall veV
and TV = (Tl",Tz",O,---). Forall v eV, define the following parameters
A®):=1, U,
A):=1, @1-U"),
Ag(t):=0=As(t) ="

t
BV (t) = (_V /\1}
' u teo,1]
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vy = LY
Bz(t).—(l vole[o’l]

By(t):=0=By({t)="-- (28)

Defineamap C":Q — H , the vertex weight by

V. Vv vVl
C':=C(U",)+],_ U"Q", (29)
where C is given in (23). Here (AV, BV,CV),V €V in terms of U" are iid copies of (A B,C). The edge

weight T;" attached to the edge (v,vi) is given by (Ai", Bi"). The tuple (V,(TV,CV)VE\,,(G,*, H ,®)) is a
weighted branching process. Consider the weighted branching process as given above and for all ve ¢ , define
the sequence

Ry:= D L,®C™ Ry=0, (30)
We;<n

where the family of path weights L' := (L\VN)WE\, from the node v is given recursively by (14).

Lemmab5.1 Let U be auniformly distributed random variable on [0,1] and C defined as in (29). Then for all

te[0,1) E(C)=0 and Var(C) < .

Proof. E(C) = 2J.01u Inudu + Ejz(l+ uQ+2(1—u)In(l—u))du + f(Zu -1+2(1-t)In(1—t)—2(u —t) In(u —t))du.
It follows

1 1 1
ulnudu = | u?(Inu)?du =-=,
.[o J.o (Inu) 4

1 2 2 _ 2
L(l—u) (In(-u)du =,
t 1[ ) t2 J
I(l—u)ln(l—u)duz— C(1-1)? It +——t |,
0 2 2
jl(u—t)ln(u—t)du:1((1—02|n(1—t)—1(1—t)2],
t 2 2

t 1( ., t2
t—u)In(t—u)du==|t°Int—— |,
L( u)In(t—u)du 2( n ZJ
and

j:u(l— u)(Inu) In(L—u)du = ﬁ(:«:? —~37%)~0,068437 <1.

Therefore E(C)) = 2'[)1u(lnu)du +J.;(1+uQ+2(1—u) In(1—u))du =0.
Moreover
E(cz)s1+4ru|nudu+4jlu2(|nu)2du +4I1(1—u)ln(l—u)du +4J.l(1—u)2(ln(1—u))2du
0 0 0 0

+8fu(1-u) Inuin(—u)du +~E(Q?) <.
0 3

Lemma 5.2 The random variables R, defined as in (30) satisfies the backward recursion
2
Ry=>T'®R), +C"
—

forall veg and meN.
Proof. The sum Ry, is well defined and by equations (30), we have
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v VokT W % T WM Wit ww
R = D> (T *Tot % T, 1) ®C

|wj<m

m
W, VW, W,
= Z Z (T&Il *Twzl *...TWkl k—l) ®CVW

k:OWer
_ v, N : Va4 s TV vix
=C +Zz Z (TV*T x.T )®C
k=1 i=1xeV, 4
N 2 v S Vix1 ViXp Xy o Vix
=CY+ TV DT AxT )®C
i=1 K=1xeVj 4

2
=C'+ > T *Ri..
i=1
The connection between the operator K and the weighted branching process R,, in the case of the Partial

Quicksort is given by the following Corollary.
Corollary 5.1 Let the starting measure z, be the point measure on the function 0 e D identical 0. Then the

random variables R, defined as in (30) satisfies

Rua =C’+ ) A’ Ry B, (31)

ieN
where Rri, denotes the the random variable R, for the tree with root i . The distribution of R, is K"(x;) .
Proof. In the positive case all R, and n—fold iterates K" (1) are well defined [3]. By Lemma 5.2, the
sequence R, satisfies the backward recursion
Rni1=Cy+ D T/ ®R),.
ieN

If T, := (AiV,BiV) forall veV,ieNandT'=(,T,), then we have

R, =C’+ (A, B JoR, =C?+ S A R} o BY.

ieN ieN

To prove the distributional result on R, we use the mathematical induction on n. The induction base case
when n=1 is true since R, = C? has the distribution K () . For the inductive step n to n+1 argue by the

backward recursion

Roa =C?+ D ARy 0B = K(A(R,)) = K(K"(110)) = K™ (110).

ieN

Here the random variables (/Vj, B?,C"}) R!,ieN are independent. Forall VeV,neN define S':Q—D
by

Syi= Y L,®C™, sy=C. (32)

[wj=n

The equation (32) defines the total weight in the n-th generation. Our interest concentrates on the total weight
(cost) regarded up to the n-th generation. From equations (32) and (16), we have

Sy =Ria—Ry (33)
Now, it is easy to show that for all @ Q and S,(w) € D,
Sy =>T*s (34)
ieN

where T; and S} and S? are the S, random variable for the tree with root i . Using the equation (33) and
(34), for all t [0,1] we obtain
S10 = Y (A" 81 oY k0 = (A5 o BY + Y-S 0BY 0
ieN
and therefore
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t-u’
1-uY
Lemma5.3 Let S;,neN,veg be asabove. Then forall neN, E(|S,| )=0 and Var(|S,|| ) converges
exponentially fastto 0,as n—oo.

ZJ

2 2
- Eslﬂpuku s ]+ ko0t E=0)] J

All mixed terms are zero. The first term is

t
SR = v, VSt + v, A-UDSIAC 50 (35)

D
Proof. Notice (S)), =(S/), - By equation (35)

0 = T = s

L UShL () + ko -U)SEA ()

2
esup| LoUst ()] = E(uzsup(sﬁ_xg»ﬂ <eue(Jsif (%)
t t<u
And the second term is
t-U.\ t—U
E L(@=U)SZ,(—) | =E| (1-U)?*supS?,(-——)?
sgp(lw( ) nl(l_U)j (( )" sup nl(l_U)j
< E((l—u)z s,f_lm < E(l—u)z)E( s2. m 37)

Then we have

2

2
Sn—l n-1

$45Ds¢u2+Ea—ufk(

fjsEE(s f )
w 3 2,D

. 2
For ne Ny, let b, :=||S, 4, - Notice b, does not depend on the vertex v. Then b2 < Eb,f_l,

n
and therefore by iteration of the inequality b? < @j b§ < co. Where by =[So|,, =|CU..), <.
Let A(t):= Zi'Ai(t)| for all t [0,1] and note that E||A| =E(U)+E(1-U)=1 and

SE sup [A )] = EU? +E(L-U)? = 2EU?) = 2 <1.
oo teo,1 3

i=1,2 [0,1]

Lemma 5.4 For fixed t €[0,1] and ne N, Var(R,(t)) converges exponentially fastto 0,as n —oo.
Proof. The random variables S;,e N are pointwise well defined and measurable. By Theorem 5.3 we have

n-1 2
ER,1)?)= € [ZSJ- <t>} - E[ZZsjmsj <t>} =3 S Elsi0s; )
j=0 j i

n-1 n-1
=Y el )2+ 33 Els s, 0)
i=0

i=0 iz |
By the Cauchy-Schwarz inequality, S;(t)S;(t) is integrable. For i, j €N and i < j, define

B;:= a((TV,CVJV‘Sn)
By conditional expectation we have for i < j

E(Si (©S;(®)= E|E(S; (©)S; ) | B, )| = E[S; (DE(S; () B, )|=0
n-1

Therefore E((R,(1)?)= > E(:(1)?)
i=0

And therefor Lemma 5.3 finishes the proof of the following main result.
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Theorem 5.1 Let (V,((T;,T,),C),(G,*),(H,®)) be the weighted branching process defined as above. Then R}
converges uniformly as n— oo almost everywhere in D to a random variable RY for all ve¢ . The family

RY,vec satisfies

2
RY = zTiva +CV
—r

almost everywhere. Moreover, for every p >1 holds

1

1
p
vl

8+(

Jo], <22

1

where k, = (ﬁ)p and Q is a random variable with the Quicksort distribution.
+
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