
International Refereed Journal of Engineering and Science (IRJES)

ISSN (Online) 2319-183X, (Print) 2319-1821

Volume 6, Issue 8 (August 2017), PP.55-69

www.irjes.com 55 | Page

Running time Analysis of Sorting Algorithm via an Asymptotic

Distribution

*
Mahmoud Ragab

Mathematics Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt

Corresponding author: *Mahmoud Ragab

Abstract:- Sorting data is one of the most important problems that play an important rule in many applications

in operations research and computer science. Many sorting algorithms are well studied but the problem is not to

find a way or algorithm to sort elements, but to find an efficiently way to sort elements. The output is a stream

of data in time. We are interested in this flow of data. For the performance of such algorithms, there has been

little research on their stochastic behavior and mathematical properties.In this paper we study the mathematical

behavior of some different versions sorting algorithms. We also discuss the corresponding running time using

some different strategies.

Keywords:- five key Sorting, Algoritms, divide and conquer, Performance, stochastic process, Convergence

cadlag functions, asymptotics, Skorodhod metric.

Date of Submission: 11 -08-2017 Date of acceptance: 28-08-2017

I. INTRODUCTION
Classical analyses of sorting algorithms make the efficiency is the general purpose. The efficiency of

the good algorithm depends on many various factors such as , software and hardware use. More recently

researchers have recognized that on modern computers the cost of access- ing memory can vary dramatically

depending on whether the data can be found in the first-level cache, or must be fetched from a lower level of

cache or even main memory. The efficiency of an algorithm using a poor code, is differ than using a good code,

in addition the operating system itself. The running time of executing sub-arrays is particularly important for

sorting because the inner-loops of most common sorting algorithms consist of comparisons of items to be sorted.

Thus, the expected of these comparisons to do the job is critical to the performance of sorting algorithms.

Throughout this paper we ignore all aspects of these factors unless the the behavior the sorting scheme whose

outcome depends on a number of comparisons needed to the sorting algorithm in its input.

Selecting a good pivot is important. A poor choice of a pivot could give a running time quadratic

proportional to the number of elements squared. Therefore selecting a good pivot greatly improves the speed of

the Quicksort algorithm. Many people just use the first element in the list as the pivot, however this causes the

sort to perform very badly if the data is already sorted. There are several methods to avoid the worst case in

practical solutions. Unix uses the median of the first the last and the element in the middle. Therefore, when

choosing the pivot we need to be more careful. For example, when Quicksort is used in web services, it is

possible for an attacker to intentionally exploit the worst case performance and choose data which will cause a

slow running time or maximize the chance of running out of stack space. The choice of a good pivot greatly

improves the speed of the Quicksort algorithm.

The simplest way is to choose an arbitrary element say the first for example as pivot, this does not

avoid the worst case. Instead of using the first element, a much better method is called median of three

Quicksort. In that method choose the pivot of each recursive stage as the median of a sample of three elements.

Other method is to take tree samples, each sample contain 3 elements, take the median for each sample and

choose the median of three medians as a pivot,this method called pseudomedian of 9 Quicksort.

To make sure to avoid any kind of presorting it is better to use the median element of the first, middle,

and the last element as a pivot. To optimize the algorithm, for an array smaller than 7, the pivot is chosen as the

middle key or sort with the standard Quicksort, for mid-sized arrays(for an array of size between 8 and 39) the

pivot is chosen using the median-of-three Quicksort, and finally for larger arrays use the pseudomedian of 9

Quicksort. This helps some but unfortunately simple anomalies happens [1].

Some recent papers considered a version of Quicksort algorithgm called the random median Quicksort.

For a random variable k, the pivot element has been selected to be the median of 2k+1 elements. In each step

recursively recall of the algorithm. Later, many researchers has received the interest of the visualization of

multi-pivot Quicksort in accordance with Yaroslavskiy proposed the duality pivot process which outperforms

standard Quicksort by Java JVM. After that, this algorithm has been explained in terms of comparisons and

Running time Analysis of Sorting Algorithm via an Asymptotic Distribution

www.irjes.com 56 | Page

swaps by Wild and Nebel [6]. Not long ago, a new version from Dual-pivot Quicksort algorithm has some other

number k of pivots. Hence, we discuss the idea of picking k pivots, by random way and splitting

the list simultaneously according to these. The modified version generalizes these results for multi process. We

show that the average number of swaps done by Multi-pivot Quicksort process and a special case. Moreover, [7]

obtained a relationship between the average number of swaps of Multi-pivot Quicksort and Stirling numbers of

the first kind.

Let nX be the number of comparisons used by Quicksort to sort a list of size n . The random variable

nX is basically proportional to the running time of Quicksort which depends (a little bit) on the implementation

and computer hardware. The average number)(nXE of comparisons [1] is nnXE n ln)( . The first complete

running time analysis for a random divide and conquer was for Quicksort [13]. The random variable

n

XEX
Y nn

n

)(
=



 converges in distribution to a random variable Y , which distribution is characterized as the unique

solution of the stochastic fixed point equation

)()(1= 21 UCYUUYY 
D

with expectation 0 and finite variance. Here U is uniformly distributed on [0,1] and
21,, YYU are independent.

1Y and 2Y have the same distribution and C is given by

[0,1]1,)(1ln)2(1ln2:=)( xxxxxxC .

 Quickselect or FIND, introduced by Hoare [2] in 1961 is a search algorithm widely used for finding the

l -th smallest element out of n distinct numbers. Most of the mathematical results on the complexity of

Quickselect are about expectations or distributions for the number of comparisons needed to complete its task

by the algorithm [10]. A pivot is uniformly chosen at random from the available n elements, and compares the

1n remaining elements against it.

Let)(kX n be the number of comparisons needed to find the l -th smallest out of n . The running time of this

algorithm is always a random variable either by random input or internal randomness. The expectation of

)(kX n is explicitly known [1]

))3(2)(1)(32(=))((1 knknn HknHkHnnkXE 

for nk 1 , and kH denotes the k -th harmonic number. An asymptotic approximation as n is

)(1ln)2(1ln22
))((

tttt
n

kXE n 

for 1=0 
n

k
t . The asymptotic variance))((kXVar n was derived using combinatorial and generating

function methods [10]. Furthermore, Roesler [9] studied the limiting distribution of)(kX n or nX as a process.

 A major tool are fixed point equation and the contraction method for operator K like

CYAK ii

i


N

D

=)( (1)

 The random variables iYCBA i ,),,,(are independent and the random variables iY have the same

distribution  . In a more general form of (1), Knof and Roesler [3] considered general recurrence

nn

i
n

I

i

n

i

i

n CBYAY 



N

D

= (2)

 on the set D of cadlag functions on the unit interval [0,1] . Here
j

k
n

i
n
i

n
i

n
i YCIBA),,),,((, kji ,, are all

independent.
nn

i
j

i CAY ,, have values in the set D . The random variables
n
iB take values in


D , the set of all

maps from the unit interval to itself and piecewise increasing.

 Under some assumptions they showed the existence of solutions of (2) via the weighted branching process, and
nY converges in distribution to Y satisfying

CBYAY iii

i





N

D

= (3)

Running time Analysis of Sorting Algorithm via an Asymptotic Distribution

www.irjes.com 57 | Page

 The contraction method invented for the analysis of Quicksort, proved to be very successful for other

algorithms [5, 11]. The contraction method is a general method to derive convergence in distribution of

recursive structures. This method was pioneered by Roesler [11] and later by Neininger [5]. This method was

explained in the context of several divide and conquer algorithms in [11]. Knof [3] studied the finite

dimensional distributions of D-valued processes nY by the contraction method. He introduced a suitable

complete metric space and showed convergence of all finite dimensional distributions. His results include

Quicksort. A nice version of the Quickselect processes is used to and show the convergence in other topology to

a limiting process Y which is a fixed point of the map K [8]. In our work, we use a smart approach to show the

existence of partial sorting process via the weighted branching process. Our approach was inspired by the

methods used for the analysis of Quickselect [8], where fixed point equations on D were considered for the

first time.

The equation (2) implies the distributional equality and YY = satisfies the fixed point equation (12). The

family vY is explicitly given in [8]. Also consider [9] for further details.

This result is a probabilistic result and we obtain it via the Weighted Branching Process [12] and an explicitly

given nice family of processes
v

nY indexed by n and the binary tree. Basically we use the splitting U - rvs

for the Y process also for the nY process.

II. THE RECURSIVE EQUATION OF COMPARISONS
Like in the clasical Quicksort [2], choose with a uniform distribution a pivot, split the set S of

numbers into the set <S of strictly smaller ones than the pivot, the pivot and the set >S of strictly larger ones in

this order. Then continue recalling Quicksort always for the left list .<S If <S is empty continue with the next

leftmost sublist recalling the algorithm. If <S consists only of one element, output this number immediately and

continue with the next leftmost list. Now define the random variable,),(lSX of comparisons required to sort l

smallest elements in an array of distinct S numbers. The random variable X satisfies the recursive formula

    
lIlIll IlSXISXlSXSlSX),(1),(),(1=),(>

2

<

1

><

1   11 (4)

for .||,1,2,= Sl 

Here 1|=|)(= < SSII denotes the rank of the pivot after comparisons. I means the index of the

position it occupies in the sorted sequence and has values in },{1,2, n with a uniform distribution. The rv I is

independent of all X random variables in equation (17). The random variable),(< SX satisfies a similar

recursion, where)(<SI is independent of everything before. Continuing this way we find the distribution of

|)|,(SSX as the Quicksort distribution sorting S by standard Quicksort. In the next proposition we will show

that the distribution of),(lSX depends on S only via the size n of S

Proposition 2.1 Let SS, be two sets of n different reals , and let nl 1,2,= . Then

   .),(=),(lSXlSX LL

Proof.

By induction on n . It is true for 1=n and we are done. Assume it is true for nk  , so we use the notation

 .)),(((=)),((kSforlSXlSX ll LL (5)

The random variable)(=)(SISI is uniformly distributed on  k1,2, . Let  kllkX ,1,2,
1)),(( ,

 kllkX ,1,2,
2)),(( be independent random variables independent of I and with the distribution given in (5).

Since nSSSS ><>< ,,, then

ll lSXlSX)),(((=)),((<<

1 LL and ll lSXlSX)),(((=)),((>>

1 LL

Now let 1== nSS . Then

),(1()=(=)),((<

1
1

1=

lSXkiIPlSX il

k

i

l 



 1LL lil ilSXiSX))),(1),((>

2

<

1

> 1

Running time Analysis of Sorting Algorithm via an Asymptotic Distribution

www.irjes.com 58 | Page

)1,(1()=(= 1
1

1=

liXkiIP il

k

i

 



 1L lil ilinXiiX))),(1)1,((21
>  

),(1()=(= <

1
1

1=

lSXkiIP il

k

i





 1L lil ilSXiSX))),(1),((>
2

<
1

>  

.)),((= llSXL

 1)),,((=1)),((<

1

<

1  ISXISX LL

and

)).,((=)),((>

2

>

2 IlSXIlSX  LL

Then)).1,((=)),((lkXlSX LL Then the statement is true for 1= kn and therefore true for all n .

Remark:

The above Proposition is true states that the distribution of),(lSX depends only on S and l . The equation

(17) determines the distribution of),(lSX via the distribution for smaller sets and notice |)(|=)(SISI

lnnnn

n
Iln

n
Il

D

IlInXIIXlIXnnX))),(1)1,(()1,(1(=),(211

<  11 (6)

For the distribution of  nlnXnX nl ,)),((=),(,1,2,=  . The rvs ,nI njikjX
j
k

i <1,2,=,)),((
1
0=


 are

independent. The rv nI has values on },{1,2, n ,),(jX i
 has the same

distribution as),(jX by recursion. We put for notational reasons (boundary conditions))(0,0,0)( ii XX

for 1,2.=i Notice 1).,(=),(nnXnnX

 In our version of Quicksort we use internal randomness by picking the pivot by random with a uniform

distribution. Like in standard Quicksort, we could instead of internal randomness also use external randomness.

Choose as input a uniform distribution on all permutations  of order n and pick as pivot any, for example

always the first in the list. Now),(X is a deterministic function depending on the input . Seen as a rv with

random input  we face the same distribution as with internal randomness. The main advantage using internal

randomness is the same distribution of X for every input of the same seize. Alternatively we could start with iid

random variables uniformly on [0,1] and choose as pivot always the first element of the list. The algorithm

itself would be deterministic, the time spend ()= X is a rv via the input of an iid sequence.

From equation (6) we obtain a recursion for the expectation)),((=),(lnXElna

)1,(
1

)),(1))1,((
1

1=),(
1=1=

lja
n

jljnajja
n

nlna
n

lj

l

j

 


The term),(nna is the expectation of sorting n numbers by Quicksort. All),(lna are uniquely defined by the

above equations and the starting conditions. Martinéz [4] obtained the explicit formula

 66)32(1)2(2=),(1   lHlnHnnlna lnn (7)

 .1  nl (Notice not for 0=n and 0.=l) jH denotes the j -th harmonic number .
1

=
1= i

H
j

i
j  For

Quicksort we obtain the well known formula .41)2(=),(nHnnna n 

 Martinéz argued with Partial Quicksort),(lnPQ , which for fixed ln, sorts the l smallest elements of

a list. For more results and versions of it, optimality and one-dimensional distributions for Partial Quicksort see

[4]. The Quicksort process is an extension of Partial Quicksort in the sense of taking l as a time variable. We

find first the 1l -smallest elements, then continue this search for the l -th smallest, then 1l -th smallest and

so on. Now to the distribution of the process),(nX in the limit. This is the question, how much),(lnX differs

from the average).,(lna We suggest a normalization of),(lnX to obtain a non degenerate limit distribution.

Often this is the random variables of the form

n

lnalnX

n

l
Yn

),(),(
=)

1
(


 (8)

Running time Analysis of Sorting Algorithm via an Asymptotic Distribution

www.irjes.com 59 | Page

 for nl ,1,=  and)
1

(=(1)
n

n
YY nn


 satisfy the recursion, 1n

nl

n

n

n
In

n

n
I

n

n
Il

n
n

I
n

n
Iln

D

nl

n
In

Il
Y

n

I
Y

n

I

I

l
Y

n

I
IlnC

n

l
Y 

 



















0

21

1>1

1

11

0

)))()(1(1)
1

()
1

(
1

),,((=)(11

1)1,(1)1,((1(
1

=),,(=1<1   iialian
n

ilnC ilil ))1,(1)1,((>1 ilinaiiail  

 Notice nY is well defined and there are no boundary conditions besides .0 10 YY 

We extend the process nY nicely to a process on the unit interval [0,1] with values in the space [0,1]= DD of

cadlag functions (right continuous functions with existing left limits) on the unit interval. This can be done by

linear interpolation or a piece wise constant function. We shall use the extension

)(:=)(
n

nt
YtY nn


 (9)

 The process nY is continuous at 1 and satisfies the recursion, we use
n

I
U n

n =

1)
1

(
1

),,((= 1
1< 




 

n
n

I
n

n
Utn

D

n
I

nt
Y

n

I
IntnCY  t

n

n

n
In

n

n
I

n

n
Ut

U

Ut
Y

n

I
Y

n

I
)))

1
()(1(1)

1
(21

1






 

for .n In short notation

))(,)(,(= <
2

<
1

nkknkknn

D

n YYUY  (10)

for a suitable function .n

If n then nU converges in distribution to a rv U with a uniform distribution. We might expect that the

process nY converges in some sense to a limiting process [0,1]))((= ttYY with values in D satisfying

something like the stochastic fixed point equation

 tUtUt

D

tUC
U

Ut
YUUY

U

t
UYY)),())

1
()(1(1)()((= 211

< 



 11 (11)

),,(= 21 YYUY
D

 (12)

 for a suitable function . The rvs UYY ,, 21
 are independent. 1Y and 2Y have the same distribution as Y and

U is uniformly distributed on the unit interval [0,1]. The cost function),(= UCC is given by

)(1ln)(1)(1ln)((12)(=),(< uuttuCtuC ut  ))(1)(ln)(ututu  (13)

 and is the limit of),,(ilnC with u
n

i
t

n

l
nn  , ,[8].

III. BINARY ULAM-HARRIS TREES
To ensure a high Consider the infinite Ulam-Harris tree

n

n

NV
N


0

:=


be the infinite tree rooted at }{ where }{1,2,=  denotes the set of positive integers and by convention

}{:=0  contains the null sequence  . Each ),,,(= 21 nvvvv  is called a node or vertex which we also

write as nvvv 21 . The vertex v is uniquely connected to the root  by the path

.1211 nvvvvv 

The length of v is denoted by v , thus nvv n =1 and in particularly we use 0:= . For all v and for

every k define









 vkv

vkvv

k

v kk <

0=

:= 1| 



Further we use the notations for mwww 1= , ,:= 2121 mn wwwvvvvw  and vvandvv :=:= 

Running time Analysis of Sorting Algorithm via an Asymptotic Distribution

www.irjes.com 60 | Page

In our work we suppress if possible the root  .

Definition 3.1 For all wv, , the prefix order  on  is given by .=:: wvuuwv  

The node v is called an ancestor or progenitor of w and conversely w is called a descendant of v . If u ,

then v is also called a mother of w and, conversely, w is called a child or offspring of v .

We further define .: wvwvwv  

In the context of branching tree, the relation wv < may be interpreted as, the node v is strictly older than w in

terms of generations. We extend this definition to subsets of  . For all L and v , Define

,:: LvwwLv  V°

  LvwwLv  :\: V

and

,: vwandLwvL  

.: vwandLwvL  

 We use the m -ary tree    n

n
mm   1,:=1,

0

*


. In the case that  n

n
1,2:=

0
 N

V


, the tree is called

binary tree. Let),,(P be a probability space, rich enough to carry all occurring random variables in our

work. Let ,*)(G be a measurable semigroup (hghgGGG *=),(,:*  associative and measurable) with a

grave  *==*:(, ggg) and a neutral element e (egggeGg *==*:).

The semigroup ,*)(G operates transitive and measurable on the measurable space H via HHG  : and

HG is endowed with the product  -field. Let GT : be a random variable relative to the product

space.

 We use the notation),,(= 21 TTT , where GTi : is the i -th projection of T . Let HC : be a

random variable with values in a measurable semigroup H .

Let VvCT vv),,(, be independent copies of),(CT on the same probability space),,(P . We call
v

iT ,

the weight attached to the edge),(viv connecting v and vi . vC is called the weight of the vertex v . The

interpretation of vC is as a cost function on a vertex v . A tuple  ),(,*),(),,(, HGCTV as above is

called a weighted branching process (WBP). For a weighted branching process without costs we write also

 ,*)(,, GTV . We shall use freely other trees such as m -ary trees  *1,2, m of all sequences in an

appropriate sense. The interpretation of G is as maps from H to H . If H has additional structure then we

might enlarge G to have the induced structure.

For example if H is a vector space or an ordered set, we may extended G to a vector space of maps or ordered

sets via the natural extension.

Definition 3.2 Define recursively a family vvLL)(:= of random variables GLv : by

.,*:=,:= NV  ivallforTLLeL v

ivvi

We call vL the path weight from the root  to the node v . Similarly, we define recursively for all v , the

family of path weights from v to vw w
v
w

v LL)(:= by

 .,*:=,:=   iwallforTLLeL vw
i

v
w

v
wi

v
 (14)

 The path weight vL has the following product representation

 12121

3

1

21
****= n

vvv

n
v

vv

v

v

vvv TTTTL


 k
v

k
v

n

k

T |

1

1

0=

=:




 (15)

 for nvvvv 21= . Hence vL is just the accumulated multiplicative weight along the path connecting the root 

with the node v . vL forms the total weight of the branch starting from the root  to node v accumulated under

operation * of the edge weights.

An individual or a node v is called alive, if vL , otherwise the node is called dead. In particular all nodes

with weight  are skipped in pictures. Define the total weight (cost) regarded up to the n-th generation by

Running time Analysis of Sorting Algorithm via an Asymptotic Distribution

www.irjes.com 61 | Page

 nCLR v
v

nv

n ,:=

<

 (16)

Because we deal only with positive values, everything will be well defined in our examples. We explain the

forward and backward view via a weighted branching process on  for simplicity. The same argument will

hold later for the the weighted branching process)),(,*),(),,(,(


DDCT . Consider a weighted branching

process)),(),,(),,(,(  CT .

For the next sections we need the following two examples. Although they provide known results the novelty is

the line of arguments, which can be generalized and which are the key for the Quicksort process.

Example 3.1 Here we show mainly the existence of the Quicksort distribution. Consider the weighted branching

process)))(),,1((),,,,(,({1,2}* UCUU   with U has a uniform distribution and

).(1ln)2(1ln21:=)(xxxxxC  (17)

 G is the multiplicative semi group  with the neutral element 1=e and the grave 0.= G operates

transitive on =H by multiplication. Let VvU v , be independent rvs with a uniform distribution on [0,1] .

Put)(=,1=,= 21
vvvvvv UCCUTUT  .

Since H is an ordered vector space, we extend G with the interpretation of maps to the ordered vector space

generated by the maps. The total weighted cost v
v

m
Vv

m CLR  
<

:= up to the 1m generation is an 2L -

martingale and converges in 2L and a.e. to a rv Q . The distribution of Q is called the Quicksort distribution.

The distribution is uniquely characterized [10] as the solution of the stochastic fixed point equation

 N)()(1= 21 UCQUUQQ
D

 (18)

with expectation 0 and finite variance. Here
D

= denotes equality in distribution. The random variables

21,, QQU are independent, U is uniformly distributed and 21,QQ have the same distribution as .Q

By the a.s. convergence of vwv
w

m
Vw

v
m CLR  

<

= the rvs

 vwv
w

Vw

v CLQ 


:= (19)

 exist and satisfy a.e.

)()(1= 21 vvvvvv UCQUQUQ  (20)

for every .Vv Of course the distribution of
vQ is a solution of (18).

Example 3.2 Convergence of the discrete Quicksort distributions [9]. The original problem concerns the

number nX of comparisons to sort n distinct reals. We use internal randomness. Then for n

21
11=

n
In

n
I

D

n XXnX  

with
21,, XXIn are independent, nI has a uniform distribution on n,1, and

21, ii XX have the same

distribution as .iX The boundary conditions are 0X and 1X are identical 0. The expectation of nX is

).,(= nnaan The normalized rvs
n

aX
Y nn

n


= satisfy the recursion

)(
1

= 21
1 nn

n
In

n

n
I

n
D

n ICY
n

In
Y

n

I
Y 







where

n

aaan
iC inin

n
  11

:=)(

Now the abstract embedding into a WBP with an additional parameter .n Let H be the set of functions

 0:h and G the set 2GH  where 2G are the functions 00:  g satisfying 0=(0)g and nng <)(

for all .n The semi group structure is given by

),(=),(*),(121212211 gggffgfgf 

Running time Analysis of Sorting Algorithm via an Asymptotic Distribution

www.irjes.com 62 | Page

and the operation on H via gfhhgf =),( .

The interpretation of Ggf ),(is as a map on H with f is a multiplicative factor and g an index

transformation. The operation * corresponds to the convolution of maps on .H Since H is a vector space we

may enlarge G naturally to a vector space.

Consider the binary tree V and let VvU v , be independent rvs with a uniform distribution. Let  vv

n nUI =

(upper Gauss bracket) and define the transformations on the edges 2),(1),,(vvvv by

v
n

vv
n

v InnJInJ  =)(1=)(21

))(,
)(

(=)())(,
)(

(=)(2
2

21
1

1 nJ
n

nJ
nTnJ

n

nJ
nT v

v
vv

v
v

 and the vertex weight)(=)(v
nn

v ICnC .

The random variables vwv
w

m
Vw

v
m CLR 


<

:= converge as 0m a.e. and in 2L to a limit
vR and satisfy

vvi
m

v
i

i

v
m CRTR  1= 

for }.{=  Nm Notice the connection to the previous description,)(= nRY
D

n  .

)(nRv
 converge for every Vv in 2L to the rv

vQ from the Quicksort example [?]. We shall use

)(= nRQ vv
n  in the sequel.

It is worth while to put the two examples together. Use }{= 00  instead of 0 in the second example

and incorporate the first example via the value .

For later purpose we establish a general Lemma. Let)),(),,1(=,{1,2}=(*  UUTV be a WBP without

costs. Let U have a uniform distribution. Let VvnCv
n  ,,0 0 be a sequence of positive real rvs. Let

VvX v ,0 be rvs and define  nVvX v
n ,, by

v
n

v
n

vv
n

vv
n CXUXUX  ))((1)(= 2

1
1

1

Lemma 3.1 Assume for 2ln>p 0.sup> n
p

v

nVv
C 


 Then

v
nX converges as n a.e. to 0 for all

.Vv

Proof. Let .sup= v
w

n
Vw

v
n LM 

 We intend to use a result of Biggins [9]
n

M v
nln

 converges as n to some

a where a is uniquely determined by 0.=)(aI The function))(ln(inf=)(
0>




xmxI  is the Fenchel-

Legendre Transform of the the convex function)(ln  m where .)(=)( i
i

TEm 
 In our case

.
1

1
=)(


m The minimum of the function))(ln( xm   is attained at)(= x with

0.=
1

1
x






 We obtain 1ln=)()(ln=)( xxxxxxI  .

Therefore .=00=)(1 aeaI a  
 The solution 1= a is uniquely determined. The assumptions of Biggins

result are satisfied. For given 2ln<<0 p let)(= 00 vv nn be such that for all
vnn 0 .)(nav

n eM 

By induction we obtain

vw

jn
v
w

j
Vw

n

j

v
n

v
iin

v
n CLCTCX 




  

1

0=

1

We shall use for some 1n sufficiently large

.

1

10
=

1
10

0=

1
vw

jn
v
w

n

nvnj

vw
jn

v
w

nvn

j

v
n

v
iin

v
n CLCLCTCX 










  

Running time Analysis of Sorting Algorithm via an Asymptotic Distribution

www.irjes.com 63 | Page

The first sum converges a.e. to 0 for every 1n and .Vv

For the second let n<0 satisfy .<  
n

 We intend to use Borel-Cantelli for the sequence

},{=)(
j

vw
jn

v
w

j
Vw

jav
j

v
j CLeMD   



p
j

pja

pvw
jn

j
Vw

v
j

e

CE
DP

)(

)(
)(









p
j

jpap c
e



)2ln(

 where c is the finite constant 0.supsup n
p

v

nVvn
C 


 Since  <)(v

j
j

DP the events
v
jD appear only

finitely often for every .Vv We conclude

.<
1

10
=

1

10
=

1

10
=

 















 vw

jn

v

w
j

Vwv
j

D

n

nvnj

j

n

nvnj

vw

jn

v

w
j

Vw

n

nvnj

CLCL 1

 The first term on the right side is arbitrary small for sufficiently large .1n The second term converges to 0 a.e.

if 1n converges to . This concludes the statement.

IV. THE QUICKSORT PROCESS
In this section we specify the Partial Quicksort process by using the weighted branching process. For the

number of comparisons obtained by the Partial Quicksort),(lnX , we suggest the normalization

n

lnalnX

n

l
Y n),(),(

:=)(


 (21)

 Assume for simplicity that the rank of the pivot),(lnI is uniformly distributed random variable. The

distribution depending only on l and on the size of the list n , we obtain a recursion given by the following

Lemma [10].

Lemma 4.1

)()
1

(
1

)((1)
1

=)
1

(

1

1>

2

1

1

n

l
C

I

l
Y

n

I

In

Il
Y

n

In
Y

n

I

n
Y

nI

lI

InI

lIlI

n





























1

11
 (22)

 where

.
)1,(

),(1)1,(),(1
=)(

>
n

lIa

n

IlIna

n

IIa

n

lna

n

n

n

l
C

lI

lI

n











 








1

1 (23)

In the next lemma we will give an explicit formula of the cost function),,(ilnC . For the proof we need the well

known properties of the n -th harmonic number [1].

Lemma 4.2 The function C as defined in (13) has the explicit representation

))(
1

2(1)(
1

2=),,(111  





ninni HH
n

i
HH

n

i
ilnC)(

1

2
(2 12  




 nliil HH

n

li


))(3()1)(
1

(1 111  


 nlnnn HHlnHiH
n

i

).
)21)((

1

)11)((

1
2

lnnlin
in







 Proof. From the equation above and using the properties of the n -th harmonic number we have

Running time Analysis of Sorting Algorithm via an Asymptotic Distribution

www.irjes.com 64 | Page

)),(1)1,((1)1,()1,(),(1=),,(1)(>< ilinaiiaiialialnanilnCn ilil  1i=l1

6)6)22(21)(2(66)32(1)2(1= 11<1   lHliiHilHlnHnn iiillnn 1

)1)2()(2(1))4((2 <1= iniliil HininiiH    6)6()32(1   ilHln in

1)2()12(2= 11   nHlnHiniH nini iniil HinHliin   11)1()2(2(2))3(1 lnHln 

1)2()12(2= 11   nHlnHiniH nini inliil HinHliin   12)1()2(2(2

).
2

1

1

1
2)3(3

lnli
inHln ln





 

 Let D be the vector space of cadlag functions [0,1]:f (right continuous with existing left limits). D is

endowed with the Skorodhod topology induced by the Skorodhod 1J -metric

}<

,<:|0>{inf=),(













id

gfgfd 
 (24)

 where  is the set of all bijective increasing functions [0,1][0,1]:  . We use the supremum norm

.|)(|sup= tff
t

 The space),(dD is a separable, non complete metric space, but a polish space [9]. The

 -field)(D is the Borel- -field via the Skorodhod metric. The  -field is isomorphic to the product  -

field DA R where A is a dense subset of [0,1] containing the 1.

Let)(DF be the space of all measurable functions X with values in .D For  <1 p let)(DpF be the

subspace such that

 


<:=
, pp

XX (25)

 is finite. Here ,<,  p
p

 denotes the usual pL -norm for rvs. The map
p,

 is a pseudo metric on

).(DpF Let ~ be the common equivalence relation

0=)(~ YXPYX 

and)(DFp be the set of equivalence classes }|)({=][YXDYX :F intersected with).(DpF Then it is

well known

Proposition 4.1 For  <1 p is)),((
,pp DF


 . a Banach space with the usual addition and multiplication

.=][][

],[=][],[=][][

,, pp fff

cffcgfgf





Let


D be the subset of all functions [0,1][0,1]: f in D such that there exists 1=<<<=0 10 rttt 

satisfying f is increasing on the interval),[11 itt  for ri ,1,2,=  . In the following we consider the

composition of random variables and give some results needed in our work.

Lemma 4.3 Let X be a random variable with values in D and let B be a random variable with values in


D .

Then BX  is a random variable with values in D .

Proof. Let DX : , and


 DB : . Since for all  ,


DB)( , then the function DBX ))(( .

It is sufficient to show :)(tBX  is measurable for all [0,1]t . For all [0,1]t define

  jB j ,: by
 

j

jtB
B j

))((
:=)(


 .we will approximate the BX  by the random variables jBX 

using the discretization on the values
jjj

1
,1

2
,

1
0,  .)(tB j is a measurable for all  since

      
,,1)[)(=,1))([)(

11








 

j

ja
tBatB j

for all j and [0,1]t . By the definition of jB ,))(()(tBB j   and))((=)(lim tBB jj  . Furthermore

Running time Analysis of Sorting Algorithm via an Asymptotic Distribution

www.irjes.com 65 | Page

)))(((lim=)))(((lim=)))((lim(=))((tBXtBXtBXtBX j
j

j
j

j
j

 

Then))((lim tBX jj  is measurable since)(tBX j is measurable. This implies that)(tBX  is measurable

for all [0,1)t with respect to)( .

V. MODEL DESCRIPTION

Let


DDG := and let DH := . For all Dfff 21,, and


Dggg 21,, define the operation GGG :*

by

 
 .,=

),(*),(:=),(),,(*

12121

22112211

gggff

gfgfgfgf


 (26)

where  denotes the convolution and  is the pointwise multiplication in D . For all Dhff ,, 1 and


Dgg 1, , define the operation HHG  : by

  .=),(:=),,(ghfhgfhgf 

For all Dffffff  2121 ,,,,, ,the operation * is bilinear in the first coordinate on


DD ,

),(*),(),(*),(=),(*),(2121 gfgfgfgfgfgff 

).,(*),(),(*),(=),((*),(2121 gfgfgfgfgffgf 

And for all Dhfff  ,,, 21


Dg,

,),(),(=),(2121 hgfhgfhgff 

.),(),(=)(),(2121 hgfhgfhhgf 

The tuple Ggf ),(has the interpretation of a map HHM gf :, acting as

)).,((),(=),))(((, ntghntfnthM gf (27)

 The first coordinate f is a space transformation and the second coordinate g is a time and index

transformation. The semigroup structure * is the composition of the corresponding maps. Since H is a vector

space and  is a lattice, we will embed G to maps HH and use freely the induced structures  ,  and  .

),()(=))((
1

,
1

,
1

,
1

, hMhMhMM gfgfgfgf ),)((=))((,, hMahMa gfgf  and

)).(()))(((=))((
1

,
1

,
1

,
1

, hMhMhMM gfgfgfgf  It is easy to see the equation (26) as follow

))),((),,((=),)((11,
1

,
1

, ntghntfMnthMM gfgfgf 

)),())((,(),(= 11 ntgghfntf 

))),(((),((),(= 11 ntgghntgfntf

).,)((=
1

,
1

nthM gggff 

We notice here, the sorting partitioning strategy suggests a binary tree. Consider the binary tree   .1,2=
N

V

For   nvvvv n ,= 21  and for m , nm  , mvvvmv 21=| denote to the m -th coordinate of v . Let

  V vU v ,0,1: be independent and identically uniformly distributed random variables on the unit

interval  0,1 . Let VvQv , be the random variable has a limiting Quicksort distribution.

Define a map GT v
i : , the weights on the edges  1,2,),,( ivviv  by

  VvallforBAT v

i

v

i

v

i ,:=

and  ,0,,= 21
vvv TTT . For all Vv , define the following parameters

,:=)(
>1

v

tvU

v UtA 

),(1:=)(2
v

tvU

v UtA 




=)(=0:=)(43 tAtA vv

 0,1

1 1:=)(












t
v

v

U

t
tB

Running time Analysis of Sorting Algorithm via an Asymptotic Distribution

www.irjes.com 66 | Page

 0,1

2 0
1

:=)(
















t

v

U

Ut
tB

 .=)(=0:=)(43 tBtB vv
 (28)

Define a map HCv : , the vertex weight by

,,.)(:= 1vv

tvU

vv QUUCC


  (29)

 where C is given in (23). Here   VvCBA vvv ,,, in terms of vU are iid copies of  CBA ,, . The edge

weight
v

iT attached to the edge  viv, is given by  v
i

v
i BA , . The tuple  ),,*,(,),(,  HGCT v

vv

VV is a

weighted branching process. Consider the weighted branching process as given above and for all v , define

the sequence

0,=,:= 0

<

vvwv
w

n
w

v
n RCLR 



 (30)

 where the family of path weights Vw

v

w

v LL)(:= from the node v is given recursively by (14).

Lemma 5.1 Let U be a uniformly distributed random variable on  0,1 and C defined as in (29). Then for all

[0,1)t 0=)(CE and <)(CVar .

Proof. duuuuQEuduuCE
t

))(1ln)2(1(1ln2=)(
0

1

0
  .))(ln)2()(1ln)2(11(2

1

dutututtu
t

 

 It follows

,
4

1
=)ln(=ln 22

1

0

1

0
 duuuuduu

,
27

2
=))(1ln()(1 22

1

0
duuu 

 ,
2

)(1ln)(1
2

1
=)(1ln)(1

2
2

0 












 t

t
ttduuu

t

 ,)(1
2

1
)(1ln)(1

2

1
=)(ln)(22

1









 tttdututu

t

 ,
2

ln
2

1
=)(ln)(

2
2

0 














t
ttduutut

t

and

   1.<0,068437337
108

1
=)(1ln)ln)((1 2

1

0
 duuuuu

 Therefore 0.=))(1ln)2(1(1)ln(2=))(
0

1

0
duuuuQduuuCE

t

 

Moreover

  duuuuduuCE 22
1

0

1

0

2)ln(4ln41   duuu)(1ln)(14
1

0
  duuu 22

1

0
))(1ln()(14  

 duuuuu)(1lnln)(18
1

0
 )(

3

1 2QE .< 

Lemma 5.2 The random variables
v
nR defined as in (30) satisfies the backward recursion

vvi

m

v

i

i

v

m CRTR   1

2

1=

=

for all v and m .

Proof. The sum
v
mR is well defined and by equations (30), we have

Running time Analysis of Sorting Algorithm via an Asymptotic Distribution

www.irjes.com 67 | Page

vwk
wvw

k
w

vw

w

v

w

mw

v

m CTTTR 


)**(= 111

21
<



 vwk
wvw

k
w

vw

w
v

w

k
Vw

m

k

CTTT 




)**(= 111

21
0=



 vixk
xvixx

vi
v

i

k
Vxi

m

k

v CTTTC  




)**(= 211

1

2

1=1=




 vixk
xvixx

vi

k
Vx

m

k

v
i

i

v CTTTC  




)*(*= 211

1
1=

2

1=




 .*= 1

2

1=

vi
m

v
i

i

v RTC 

 The connection between the operator K and the weighted branching process nR , in the case of the Partial

Quicksort is given by the following Corollary.

Corollary 5.1 Let the starting measure 0 be the point measure on the function D0 identical 0 . Then the

random variables nR defined as in (30) satisfies

 ,=1

i

i
ni

i

n BRACR 






 (31)

 where
i
nR denotes the the random variable nR for the tree with root i . The distribution of nR is)(0

nK .

Proof. In the positive case all nR and n fold iterates)(0
nK are well defined [3]. By Lemma 5.2, the

sequence nR satisfies the backward recursion

.=1
i
ni

i

n RTCR 









If   NV  ivallforBAT v

i

v

i

v

i ,,:= and),(= 21
vvv TTT , then we have

   i
nii

i

n RBACR 


 ,=



.= 
i

i
ni

i

BRAC 


 To prove the distributional result on nR we use the mathematical induction on n . The induction base case

when 1=n is true since
CR =1 has the distribution)(0K . For the inductive step n to 1n argue by the

backward recursion

 
i

i
ni

i

n BRACR 






=1))((= nRK ))((= 0
nKK).(= 0

1 nK

Here the random variables   iRCBA i
nii ,,,, 

 are independent. For all NV  nv , define DS v
n :

by

 .=,:= 0

=

vvvwv
w

nw

v
n CSCLS  (32)

 The equation (32) defines the total weight in the n-th generation. Our interest concentrates on the total weight

(cost) regarded up to the n-th generation. From equations (32) and (16), we have

v
n

v
n

v
n RRS 1= (33)

 Now, it is easy to show that for all  and DSn )( ,

vi
ni

i

v
n STS 1*= 



 



 (34)

 where iT and
1
nS and

2
nS are the nS random variable for the tree with root i . Using the equation (33) and

(34), for all  0,1t we obtain

 )(=)(1 tBSAtS v
i

vi
n

v
i

i

v
n 






 )(= 2
2
121

1
11 tBSABSA vv

n
vvv

n
v   

 and therefore

Running time Analysis of Sorting Algorithm via an Asymptotic Distribution

www.irjes.com 68 | Page

).
1

()(1)(=)(2
1

1
1> v

v
v
n

v

tvUv

v
n

v

tvU

v
n

U

Ut
SU

U

t
SUtS




   (35)

 Lemma 5.3 Let   vnS v
n ,, be as above. Then for all n , 0=)(

nSE and)(
nSVar converges

exponentially fast to 0 , as n .

Proof. Notice nnn

v

n SS)(=)(
D

. By equation (35)

2

2,1

2

2,
=

DniDn STS  
















 

2
2

1
1

1<)
1

()(1)(sup=
U

Ut
SU

U

t
USE nUtnUt

t



 .)
1

()(1)(sup=

2
2

1

2
1

1< 



































U

Ut
SU

U

t
USE nUtnUt

t



 All mixed terms are zero. The first term is

 




















21
1

2
2

1
1<))((sup=)(sup

U

t
SUE

U

t
USE n

ut
nUt

t

 












2
1

1
2)(nSEUE (36)

 And the second term is


























 




22

1

2

2

2

1)
1

(sup)(1=)
1

()(1sup
U

Ut
SUE

U

Ut
SUE n

Ut
nUt

t

1

 












2
2

1
2)(1 nSuE   













2
2

1
2)1 nSEuE (37)

 Then we have

  












2
2

1
222

2,
)(1 nDn SEUEEUS .

3

2 2

2,

2
1 








 

D
nSE

 For n , let
Dnn Sb

2,1:=  . Notice nb does not depend on the vertex v . Then ,
3

2 2
1

2
 nn bb

and therefore by iteration of the inequality .<
3

2 2
0

2 







 bb

n

n Where <,.)(==
2,2,00 DD

UCSb .

 Let)(:=)(tAtA i
i for all [0,1]t and note that 1=)(1)(= UEUEAE 


 and

1.<
3

2
=)(2=)(1=)(sup

2222

[0,1]1,2=

UEUEEUtAE i
ti






Lemma 5.4 For fixed [0,1]t and n ,))((tRVar n converges exponentially fast to 0 , as n .

Proof. The random variables ,jS are pointwise well defined and measurable. By Theorem 5.3 we have

 

































2
1

0=

2)(=)(tSEtRE j

n

j

n














)()(= tStSE jj

ji

 )()(= tStSE ji

ji



    .)()())((=

1

0=

2
1

0=

tStSEtSE ji

ji

n

i

i

n

i








 By the Cauchy-Schwarz inequality,)()(tStS ji is integrable. For ji, and ji  , define

  .,:= nv
vv

i CT 

By conditional expectation we have for ji 

    ijiji tStSEEtStSE |)()(=)()(   0=|)()(= iji tSEtSE 

Therefore    2
1

0=

2))((=))((tSEtRE i

n

i

n 


And therefor Lemma 5.3 finishes the proof of the following main result.

Running time Analysis of Sorting Algorithm via an Asymptotic Distribution

www.irjes.com 69 | Page

Theorem 5.1 Let)),(,*),(),),,((,(21 HGCTTV be the weighted branching process defined as above. Then
v
nR

converges uniformly as n almost everywhere in D to a random variable vR for all v . The family

vRv , satisfies

vviv

i

i

v CRTR 
2

1=

= (38)

 almost everywhere. Moreover, for every 1>p holds

p

p

p

p k

Q
p

R






 1

)
1

1
(8

1

 (39)

 where
p

p
p

k

1

)
1

2
(=


 and Q is a random variable with the Quicksort distribution.

REFERENCES
[1]. Daniel H. Greene and Donald E. Knuth. Mathematics for the analysis of algorithms. Modern

Birkhäuser Classics. Birkhäuser Boston Inc., Boston, MA, 2008. Reprint of the third (1990) edition.

[2]. C. A. R. Hoare. Quicksort. Computer Journal, 5(1), 1962, 10–15,.

[3]. Diether Knof and Uwe Roesler. The analysis of find or perpetuities on cadlag functions. Discrete

Mathematics and Theoretical Computer Science, 2010.

[4]. Conrado Martnez and Uwe Roesler. Partial quicksort and quickpartitionsort. DMTCS Proceedings,

(01), 2010, 505–512.

[5]. Ralph Neininger and Ludger Rüschendorf. Analysis of algorithms by the contraction method: additive

and max-recursive sequences. In Interacting stochastic systems, pages, Springer, Berlin, 2005, 435–

450..

[6]. Mahmoud Ragab, Beih El-Sayed El-Desouky, and Nora Nader. On the convergence of the dual-pivot

quicksort process. Open Journal of Modelling and Simulation, 4(01), 2016, 1–15.

[7]. Mahmoud Ragab, Beih El-Sayed El-Desouky, and Nora Nader. Analysis of the multi-pivot quicksort

process. Open Journal of Modelling and Simulation, 5(01):47–58, 2017.

[8]. Mahmoud Ragab and Uwe Roesler. The quicksort process. Stochastic processes and their Applications,

124(2), 2014, 1036–1054..

[9]. Mahmoud Ragab. Partial Quicksort and weighted branching processes. PhD thesis, Kiel, Christian-

Albrechts-Universität, Diss., 2011, 2011.

[10]. Mahmoud Ragab. On the quicksort algorithm and its related process. Journal of Mathematical

Modeling and Operations Research, 01(01), 2015, 13–30.

[11]. Uwe Roesler and L. Rueschendorf. The contraction method for recursive algorithms. Algorithmica,

29(1-2), 1998,. Average-case analysis of algorithms (Princeton, NJ, 1998), 2001, 3–33,.

[12]. Uwe Rösler. The weighted branching process. Dynamics of complex and irregular systems (Bielefeld,

1991) , 1993, 154–165.

[13]. Uwe Rösler. On the analysis of stochastic divide and conquer algorithms. Algorithmica, 29(1-2), ,

2001, 238–261.

*Mahmoud Ragab. “Running time Analysis of Sorting Algorithm via an Asymptotic Distribution.”

International Refereed Journal of Engineering and Science (IRJES), vol. 06, no. 08, 2017, pp. 55–69.

