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ABSTRACT: This article reviews about Ultrafine grained (UFG) materials processed by Severe Plastic 

Deformation. From the period of 1950’s, the researchers made a fountain stone for this technique. Over the last 

decades, this SPD technique experienced an enormous growth among the research field. There was a 

development of different methods of SPD, production of various materials by SPD with improved and 

interesting results based on our requirement. Moreover, different post processing techniques will also help to 

enhance the property of the SPD processed material. This paper reviews the overall development of this 

technique, various methods of SPD, discussed about the enhancement of the properties and finally concluded 

with some specific challenges and issues faced by the modern researchers. It may be helpful to those who wants 

specialise in bulk nanomaterials produced by SPD. 
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I. INTRODUCTION 
 Grain size is a key factor which affecting nearly all aspects of the physical, mechanical and chemical 

behaviour of polycrystalline metals to the surroundingmedia. Hence, modification of grain size can able to 

design materials with desired properties. Physical, mechanical and chemical properties can benefit greatly from 

the reduction of grain size. One of the possible ways for the microstructural refinement of metals is Severe 

Plastic Deformation (SPD. Recent studies [1–4] toldaancient model for grain refinement which gives a path of 

modern era. The modern SPD technology begins from ancient work by P.W. Bridgman whodeveloped the 

techniques for materialsprocessing through a combination of high hydrostaticpressure and shear deformation 

[5,6]. In 1950s, Bridgman defined the process of SPD which evolved into new definition suitable for current 

scenarioas ―any method of metal forming under an extensivehydrostatic pressure that may be used to impose a 

veryhigh strain on a bulk solid without the introduction of anysignificant change in the overall dimensions of the 

sampleand having the ability to produce exceptional grain refinement‖[7]. Carreker and Hibbard [8]showed that 

the yield strength of high-purity copperbenefits greatly from grain. They also pointed outthat the effect of the 

initial grain size vanishes at strains largerthan 0.1 and for that reason the grain size has less influence on the 

strength under monotonic loading. Asimilar effect is also happen on fatigue property where the grain sizeof 

wavy-slip materials has no bearing on the fatigue limit.These observations can also be associated with 

dislocation substructure and size of thesubstructure.For the deformationand recrystallization behavior of metals 

and the effect ofevolving texture on the resultant properties,Gow and Cahn [9] explained thesignificance of 

crystallographic texture. Bell and Cahn[10] pointed out several features of mechanical twinning,which play a 

vital role in plastic deformation whenaccommodation by dislocation slip is hindered. Beck [11]emphasized the 

possibility of relieving theeffects of work-hardeningby post-processing recovery. Segalet al. [12]developed the 

method of equal-channel angularpressing (ECAP), which later evolved into SPD technique. As seen in 

thefollowing sections, these ideasunderlying the modern concepts of SPD. 

 Valiev et.al [13,14] begins the new possibilities for improvingthe properties of metallic materials given 

by SPD, which shows the relationship between theenhanced strength and the extreme grain refinementimparted 

by SPD processing to a range of metals andalloys. Over the last decade, the nano-SPD community which having 

animpressive group of researchers delivers a thousands of publicationson ultrafine-grained (UFG) and 

nanostructuredmaterials produced by SPD.Some more relevant articles on the subject can be found inthe 

proceedings of symposia on UFG materials [15,16] andconferences of nanoSPD [17,18]. Further useful sources 

arethe reviews [19,20], special issues of Advanced EngineeringMaterials [21], Materials Science and 

Engineering A [22]and Materials Transactions [23,24]. 

 SPD processing techniques becomes so popular because of enhancing the strength characteristicsof 

conventional metallic materials in a peculiar way. It is up to the factor of eight for pure metalssuch as copper 

and 30–50% for alloys [7,25].In spite of impressive property improvement achievedfrom SPD techniques, its 

application by industries has beenrather inactive. But now-a-days, things are now starting tochange, and there is 

a common feeling in the nanoSPDcommunity that major breakthroughs in terms of industry scale applications of 
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SPD based technologies are about to applicable.In thisarticle we reviewed thatthe evolution of SPD process up 

to the current scenario and the possibilities to achieve future trends which are tobe expected from SPD 

processing technologies. Special importancehas been placed on the scientifically challenging aspects ofSPD 

rather on technological issues. 

 

II. METHODS OF SPD 
 Among the methodsformulated for grain refinement,SPD techniques are more popular and are taken for 

thefocus of the present review. These techniques became greatpopularity because of their ability to produce 

considerablegrain refinement in fully dense, bulk scale work pieces,thus giving more promise for structural 

applications. Thegrain sizes achieved from SPD methods lie within the range ofsubmicrometer (100–1000 nm) 

and nanometer (<100 nm). Previously, SPD-processedmaterials with such grain sizes are generallyreferred to as 

nanoSPD materials [7].Now-a-days, it is named as nanostructured materialsaccording to the conventional 

definition. More comprehensivereviews have been focused on various nanostructured processingmaterials 

through SPD techniques [20,26–31]. We suggest the reader to theoriginal works for specific details and here 

only brief outlinefor SPD has been given.  

After the historic work by Bridgman mentioned above [6,33], Langford and Cohen [34] and Rack and 

Cohen [35] in 1960s revealed that the microstructure of Fe–0.003% C subjected to high strains by wire drawing 

wasrefined to sub grain sizes in the 200–500 nm range. Most of the sub-boundaries were low angle 

onthesemicrostructures, so it could not be regarded as proper UFG inthe sense of the commonly accepted 

definitions [7]. Indeed, it is the prevalence of high angle grain boundaries that is commonly considered a 

signature of UFG materials produced by SPD. This constitutes a clear boundary linebetween nanoSPD materials 

and nano-structured materials which is the conventional materials in modern days with subgrain structures 

produced by cold rolling. This difference make SPD process a step ahead from all other process for 

microstructurerefinement by deformation to gigantic strains. 

A large plastic strain imparted on a work-piece is a formidable and technically challenging task. It 

should requires a considerable importance on tool design, which on one hand during material forming, it should 

be durable enough to sustain repetitive high loads and on the  

 

Table 1: Schematic illustrations of SPD techniques 
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Other hand it should be suitable for materials processing without causing damage to the work piece. A 

peculiar feature of SPD processing is that the high strain is imposed on material without any significant change 

in the overall dimensions of the workpiece. This is attained due to special tool geometries which prevent free 

flow of the material and will able to produce a significant hydrostatic pressure. The presence of this hydrostatic 

pressure is a sign for attaining the high strains which is the requirement for achieving exceptional grain 

refinement. Many crystalline materials including brittle under ordinary conditions can ablebe deformed to large 
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strains without failure. Nowadays many varieties of SPD techniques, which employ this generic feature of high 

hydrostatic pressure and are readily available for fabrication, gave a great variety of UFG materials. 

 

2.1 Basic SPD processes 

 Equal-channel angular pressing (ECAP) is the most highlydeveloped SPD processing technique (Table 

1a). When the billet passes throughthe area where the two channels meet,there is an introduction of a simple 

shear strain. The cross sectionaldimension of the billet remainsconstant. Therefore, the process permits 

repetitive pressing which leads to accumulation of verylarge strains. There are some different variants ofECAP 

processesbased on the rotations of the billet about thepressing axis between the passes are generallyleads to 

different results in terms of the microstructureand texture produced. The definitions of these different 

ECAProutes are referred below[13,14]. The key advantagesand fundamentals of ECAPwere first formulatedby 

V. Segal in older publications [12,38-42]. He defined ECAP as ―a technique of deformation to bestow intensive, 

uniform and oriented simple shear formaterials processing‖. He also showed that ECAPis effective if (i) 

frictionis kept at minimum between the billet and the die walls; (ii) the angle between the channels isnearly to be 

90º; and (iii) the sharp outer corner is fully filledwhich ensuring that the shear zone is as narrow as possible. The 

first requirement developed by implementing surface hardening ofthe channel walls, mobile walls [37,43], etc., 

and theintroduction of new effective lubricants [36,44]. The thirdrequirement is to understanding the 

significanceof back-pressure for processing of billets with uniformmicrostructure and improved mechanical 

properties[43,45,46]. By following Segal’s philosophy, samples withuniform microstructure throughout the 

billet could be fabricated[47,48]. 

 High pressure torsion (HPT) involves a combination of high pressure withtorsional straining (Table 

1b). A main disadvantage of this method is thatonly small coin shaped samples can be processed, which is 

typically 10–15 mm indiameter and 1 mm in thickness[28]. The HPT process isprimarily used for research 

purposes due to size restriction.Another important issue on HPT is non-uniformity in deformation.In HPT 

process, theshear strain at the rotation axis should be zero and increasinglinearly in the radial direction if the 

geometry of the sampledoes not change. Thus, it shows that the material nearthe rotation axis of the work 

pieceisundeformed.Along with the other disadvantages, the compressive pressure andthe number of revolutions 

of the anvil are sufficiently large is also notableas showed in Fig. 1 [49–51]. Vorhauer and Pippan [52] 

emphasizedthis inability by the fact that it is virtually impossible tomake an ideal HPT deformation because of 

the misalignmentof the anvilsaxes. Alternatively, the development ofa uniform strain (Fig. 2) and 

homogeneousmicrostructure was decribed in terms of gradient plasticitytheory coupled with the 

microstructurallybased constitutive modelling [53, 54]. 

 

 
Fig. 1 Vickers microhardness (Hv) of HPT samples after different numbers of turns (N) as a function of the 

distance from the centre of the specimen [53]. 
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Fig. 2. Accumulated shear strain as a function of the distance from the torsion axis for the first-order gradient 

model [53]. 

 

Accumulative roll-bonding (ARB) was introduced by Saito et al. [55] in 1998 (Table 1c).This process 

overcomes major limitations likelow productivity,small work-piece size of the latter etc.., which are faced by 

ECAP and HPT. Saito et al. explains the process as a metal sheet is rolled to 50% thickness reduction. Then, the 

rolled sheet is cut in two halves and both halves are stacked together by preparing the contact surfaces with 

degreasing and wire brushing, thus restoring the original thickness of the sheet. The sequence of rolling, cutting, 

surface preparing and stacking operations are repeated continuously so that ultimately a large strain imparted on 

the material. ARB was successfully applied to commercial-purity (CP) Al, theAl–Mg alloy AA5083 and 

interstitial-free steel [56]. In addition, ARB can also be applied for the production of metal matrix composites by 

covering mixed powders and subjecting them to a process of rollbonding [57].  

Multi-axial forging was introduced as a technique for grain refinement in 1990s [58–60] (Table 1d). It 

is also known as Multiple Direction Forging (MDF) which work under three orthogonal directions. Grain 

refinementduring MDF is usually associated with dynamic recrystallization due to the performance of the 

process under the temperature interval of 0.1–0.5Tm, whereTm is the melting temperature.The method canbe 

used for grain refinement in brittle materialseven thoughin elevated temperatures. This method is also used for 

the manufacturing of large-sizebillets with microcrystalline (UFG) structures [61]. 

Twist extrusion (TE) is introduced byBeygelzimer et al. as a shear deformation process [62–64] (Table 

1e). The process is simple where a billet is extruded through a twist die. The advantage of this process is its high 

upscalingcapacity. Non-uniform deformation is the main limitation for this process as like faced by HPTwhere 

the deformation nearer to the extrusion axis is smaller.Further,Orlovet al. [65] noted that this technique is not 

much efficientthan ECAP or HPT. 

 

2.2. Derivative SPD processes 

Although the above basic processes are successful, some exotic methods were developed for different shapes 

and sizes. These are named as derivative SPD processes. A list of these techniques is listed below: 

 repetitive side extrusion [66]; 

 rotary die ECAP [67]; 

 parallel channel ECAP [68]; 

 hydrostatic extrusion [69–71]  

 hydrostatic extrusioncombined with torsion [72]; 

 repetitive corrugating and straightening (RCS) [73–75]; 

 constrained groove pressing [76]; 

 cyclic extrusion–compression (CEC) [77]; 

 cyclic closed-die forging (CCDF) [78]; 

 cone–cone method (CCM) [79]; 

 cryogenic rolling [80,81]; 

 asymmetric rolling (ASR) [82]; 
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 continuous frictional angular extrusion (CFAE) [83,84]; 

 friction stir processing (FSP) [85,86]; 

 super short interval multi-pass rolling (SSMR) [87,88]; 

 severe torsion straining (STS) [89,90]; 

 torsion extrusion [91]; 

 ECAP with rotation tooling in which the conventionalfixed die is replaced by rotating tools [92]; 

 reversed shear spinning [92]; 

 transverse rolling [92]; 

 non-equal channel angular pressing (NECAP) for plateshapedbillets [93]; 

 tube channel pressing [94]; 

 KOBO forming [95]; 

 high-pressure tube twisting (HPTT) for thin-walledtubes [96]; 

 cyclic expansion–extrusion CEE—a modified CEC process[97]; 

 simple shear extrusion [98,99]; 

 vortex extrusion [100]; 

 helical rolling [101]; 

 high-pressure sliding [102]. 

 

It is found that strength and ductility maygreatly increase,when ECAP process were combined with 

annealing / post ECAP processing like conventionalrolling, drawing or extrusion. The advantages of this 

technique to improve strength [103-105], modify texture [106] or ductility [107-109]. Finally, new integrated 

processing schemes have been recently developed and their derived properties are slightly improved when 

compared to the single process [110-112] (Table 2).  

 

2.3. Continuous SPD techniques 

 There are large numbers of discrete steps in the above mentioned SPD methods and also not cost 

efficient. Moreover, basic SPD methods cannot able to deliver large work pieces and it is not applicable to 

industry level application.Thus, continuous SPD techniques have been introduced to overcome all the 

disadvantages. The varieties of continuous SPD techniques are explained below.  

Continuous forming (CONFORM) is introducedby Etherington [120] with the aim of improving 

theefficiency of materials recycling (Table 1m). It was further developedby Segal et al. as continuous ECAP of 

bulkmaterials [37]. Raabet al. implemented these principleson Al and Ti rods [121]. In thisprocess, the work 

piece rod is placed in a groove within a rotatingshaft.By using frictional forces, the rotating shaft is driven 

forward and then it isextruded through an outlet cannel of the die. Saitoet al. modified this processfor 

processingof sheets or strips and named it as continuous shearing[122] (Table 1o).The modification of the 

CONFORM method for processing sheets or strips were proposed as Continuous confined strip shearing (C2S2) 

[123,124](Table 1p). Repetitive corrugating and straightening (RCS) is the one which can produce fine 

grainedstructures in metallic sheets or plates in bulk and as well it is a simple modification of rolling [74,75] 

(Table 1q). Incremental ECAP (I-ECAP) is introduced by Rosochowskiet al. which is the extension 

ofincremental metalforming operations, such as rolling or swaging and adapted it to ECAP by modifying it for 

processingof long billets [127] (Table 1r). 

 

Table 2Mechanical properties of someSPDprocessed UFG metals and alloys 
Material  Ref. Processing σ0.2 

(MPa) 

σUTS 

(MPa) 

δ σfo 

(MPa) 

 AZ31 [114] SC 50 170 10 40 

   HR 370ºC 175 277 21 95 

   HR + ECAP 4Bc 
200ºC 

115 251 27 95 

  [115] ST 420ºC 2 h + Q, 

ECAP4Bc 320-200ºC 

180 286 9.4 40* 

 ZK60 [110] As cast 222 264 7.4 55 

  [116] IE 300ºC 310 351 17 150 

 AA1050 

(99.5%, CP 
Al) 

[117] O 28 70 40 28 

   ECAP 8Bc N/A N/A N/A 52 

 1100 [118] ARB 8 210 275   

Non 

agehardenabl
e 

AA5052 (Al 

2.6Mg0.22Cr
, 0.26Fe) 

[119] H38 255 290 7  

   ECAP 8, 150 ºC 394 421 9  
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  [108] ECAP + A 200 ºC, 6 h 350 370 10.5  

 AA 5056 

Al–Mg 

 O 122 290 43 116 

   H18 407 434 10 152 

   ECAP 4C, 150 ºC 280 340 25 116 

   ECAP 8Bc, 110 ºC 392 442 7 116 

 AA5083 Al–

Mg 

[125] O 145 290 22  

   H321 230 315 16  

   ST 350 ºC 1 h, ECAP 
200 ºC, 8C 

276 352 20  

Age-

hardenable 

AA6061 Al–

Mg 

 O 150 270 48 40** 

   T6 276 310 12 50** 

  [128] ST ECAP, 1, 125 ºC 310 375 20 80** 

   ST ECAP, 4Bc, 125 ºC 380 425 20 <60** 

 AA 2124  T851 455 492 7.2 125 

  [130] T851 + ECAE 8Bc, 
BP 

330 602 7.2 290 

 AA 7075  O 105 230 17  

   T6 503 525 9  

  [131] ECAP 2Bc + NA 1 

month 

650 720 8.4  

 Al–4Mg–

0.3Sc 

 HD 315 415 17 160 

 Al–5.2Mg–
0.32Mn–

0.25Sc 

 HR 240 375 29 150 

 Al–1.5Mg–
0.2Sc–Zr 

[132] ST + ECAP, 8Bc, 150 
ºC 

340 360 13 135 

 Al–3.0Mg–

0.2Sc–Zr 

 ST + ECAP, 6Bc, 150 

ºC 

370 400 15 140 

 Al–4.5Mg–

0.2Sc–Zr 

 ST + ECAP, 6Bc, 160 

ºC 

230 410 29 150 

 Al–6.0Mg–
0.2Sc–Zr 

 ST460 ºC 24 h + 
ECAP, 4Bc, 320 ºC 

240 260 8 100 

 Al–5.7Mg–

0.32Sc–
0.4Mn 

[133] ST520 ºC 48 h + 

ECAP, 8C, 325 ºC 

280 300 8 190 

 AA6106 + 

0.1Zr 

[134] ST, AG190 ºC 4 h 250 350 23 175 

 AA6106d + 

0.1Zr + 
0.5Sc 

 ST + ECAP 4 + Ag190 

ºC 4 h 

570 590 9 225 

   ST, AG190 ºC2 h 375 425 16 210 

   ST + ECAP 4 + 

AG190 ºC2 h 

625 650 8 275 

Ti (grade 2)   CR 380 460 26 240 

  [134] ECAP 8Bc 400 ºC 640 810 15 380 

  [135] ECAP 8Bc 400 ºC, CR 

87% ECAP 

970 1050 8 420 

  [136] ECAP 6Bc 420 ºC 630 670 32 350 

Ti (grade 4)  [137] CR 530 700 25 350*** 

   ECAP 4Bc450–400 
ºC, FD300 ºC 

1150 1240 11 590*** 

   ECAP 4Bc450–400 

ºC, F400–300 ºC, D, 
A350 ºC 6 h 

1100 1250 13 610*** 

Cu (99.99%)  [138] ECAP 8Bc 375 387  170 

Cu–0.36Cr  [140] ECAP 8CA, AG 500 

ºC, 1 h 

438 454 23 180 

Fe (99.95%)  [139] ECAP 4Bc 696 723 7  

σ0.2 - conventional yield stress; σUTS - ultimate tensile strength; δ - elongation at break; σfo -endurance limit; O - 

as received condition; CR - cold rolling; HR - hot rolling; F - forging; D - drawing; MF - multistep forging; S - 

solution treatment; Q - quenching; A - annealing; AG - ageing; NA - natural ageing; BP - back pressure. 

*R = 0.05 

** R = 0 

*** Rotation-bending test 
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Continuous high-pressure torsion was developed by Edalati and Horita [113]. It is known to be an 

advanced version of HPT techniquewhich can able to producesheets in a continuous fashion(Table 1s). Now, 

variety of SPD techniques is available. High hydrostatic pressure and the toolgeometry are their 

commonfeatures among them which permit multiple pass operation toachieve ultrahighstrains.Differences 

between the varieties of SPD methods are deformationmode, shape of work piece, the efficacy and the load 

involved. 

 

III. PROPERTIES OF SPD PROCESSED MATERIAL 
3.1 Strength and ductility 

 Strength and ductility are the most primary parameter of a material, which will assign all other 

mechanical characteristics. These properties are grain-size dependent because it is more affected by SPD 

process than any other mechanical properties.Moreover, many properties are directly governed by strength and 

ductility.Improving strength and ductility at the same time is considered as avery challenging task. For this, a 

strategy has been followed by Hall–Petch relationwhich relates yield stress σy and the grain size d: 

𝜎𝑦 = 𝜎0 + 𝐾𝐻𝑃𝑑
−
1

2 

 

Where 𝜎0 - friction stress 

KHP– constantfor a given material 

 As we seen earlier, there are number of various SPD processes are available (Table 1). In most of the 

cases, among them, the common trends seem to be clear that while enhancing the strength there will be a loss of 

ductility. It is illustrated in fig 5. where the variation of strength with number of ECAP passes. Combination of 

high flow stress and low strain-hardeningcapability is the main reason for loss of ductility. In some other cases, 

the tensile ductility of  

 

 
Fig 5. (a)Tensile stress–strain curves and (b) S–N fatigue plot for SUS 316L austenitic stainless steel after 

ECAP [147] 
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SPD processed materials is actually higher than that of the nanostructuredmaterials, for example, by cryomilling 

[141]. ECAP processed CP Al and ARB processed UFG Al and AA6016 are well revealed for enhancement of 

ductility [142,143]. However, Markushev and Vinogradov [132] pointed out that there is no improvement in 

ductility for non-age-hardenable Al–Mg alloys,such as AA5056. But, in age-hardenable Al alloys, it is found to 

be mostresponsive to SPD in terms of structure refinement,strength enhancement and ductility improvement 

[27,144–145]. 

As a result of SPD processing, uniform elongation does not commonlyimprove, but however, 

thematerial’s resistance to localized plastic flow in the postneckingregime can increase remarkably.It was 

proved in Al alloy 6061[148], Ti [149] and Fe–36Ni Invar [150].The results for the enhancement of both 

strength and ductility showed on Ti [151], Cuand Cu–Al alloy [146,152,153], Cu–Zn [154], Al–Mg–Sc[155] 

and Al–Mg–Si [156]. Moreover,Zhao et al. [154] developed a multistepprocessing schedule which involves 

ECAP process followed bycryodrawing and cryorolling. They delivered a method for tremendousimprovement 

of strength and ductility. 

Another strategy for the enhancement of strength coupled with improved ductility is named as delayed 

necking. It was achieved by mechanisms of deformation other than dislocation based ones, such as phase 

transformations or twinning. These mechanisms are widely used in steels, which are referred as transformation 

induced plasticity (TRIP) [157] and twinninginduced plasticity (TWIP) [158].Thetensileneck formation 

increases the stress triaxiality at the neck [159]. Because of this, the martensite nucleation increases in austenitic 

TRIP steels[140]. A local phase transformation with high stressconcentrations leads to local necking which 

enhances uniform elongation. Tao et al. [160] emphasized that the phase transformation provides a source of 

local strain hardeningwhenaustenite is replaced with martensite. Zhao et al. [161] demonstrated that Successful 

implementation ofthe twinning-based deformation strategy byusing the majoradvantages of TWIP alloys with 

low stacking fault energy(SFE). He found that UFG brassCu–10 wt.% Zn with a SFE of 35 mJ m
–2

is much 

higher strength than UFG copper with aSFE of 78 mJ m
–2

and the ductility of this material was also increased.It 

is illustrated in fig 5for a stable SUS 316L austeniticstainless steel. Because of its low SFE, the deformation 

twinning of this steel wasactivated during ECAP processing at 150 ºC. After three ECAP passes by routeBc, a 

nanoscale grain structure was formed.This nanostructuredsteel provides an excellent fatigue performance 

andimpressive thermal stability as well. 

 

3.2 Fatigue and creep behavior 

 After the property of strength and ductility, fatigue and creep behavior is also an important property to 

analyze and a challenging task too. Mechanism to enhance strength strictly obeys Hall-Petch relation which is 

extended to sub-micron grain sizes and shows the dependency of grain sizes. But, however, based on the 

previous studies, our history shows thatfatigue behaviour does not exhibit strong grain-size dependence [162-

165]. So far, when ECAP process is combined with other thermomechanicaltreatments, the fatigue of UFG 

metals were obtained. 

 

 
Fig. 6 The Wohler plot comparing fatigue lives and endurance limits for conventional and SPD-manufactured 

Cu-based alloys (Cu–Cr and Cu–Cr–Zr) 
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The research work on creep behaviour of UFG materials manufacturedby SPD is very little. Sklenicka 

et al.[166–168] emphasized the different factors which affectingthe creep performance of pure aluminium, pure 

copperand the binary Al–0.2 wt.%Sc alloy processed by ECAP. Thus it is noticed that the creep behavior 

strongly depends on number of passes, a decrease inthe creep resistance on every successivepass. It is due to the 

number of factors including microstructural changes, homogenization of themicrostructure and 

nanoporosityinduced by ECAP. 

 

3.3 Thermal stability 

Improving several properties of a material at the sametime is a very challenging task for materials 

science which provides multi functionality. Along with the strength and ductility, thermal stability, electrical 

conductivity and corrosive resistance are also most important in such cases that could not able to sacrificed. 

Depending on the material and their applications, a full list of properties according to their application needs to 

be obtained [169]. In most of the cases, thermal stability is avulnerable point of many SPD-treated materials. 

For example, SPD processed pure oxygen-freecopper provides poor thermal stability [170-172]. It has a 

tendency to recover during storage even at room temperature because during severe straining, annihilation of 

excess dislocations accumulated[173] (Fig. 11a). It is clearly shows thattherate of recoverydepends on the 

number of ECAP passes. For SPD-manufactured copper,there is no significant change in microstructureup to 

120–150 ºC, but in the range of 150 to 250 ºC recovery followed by recrystallization andabnormal grain growth 

takes place (Fig. 11b). After annealing at 200 ºC for 10 min,there is a transformationof UFG structure into a 

bimodal one and at higher temperaturesit is evolved into fully recrystallized coarse-grained structure. It results 

in loss of stability depending on the purity of copper. Several processes have been used to overcome this type of 

limitations and to enhance multifunctional properties of SPD materials. Some of the processes includesgrain 

refinement, strain hardening, solidsolutionhardening and precipitation hardening. 

 

When the above post processes are applied to UFG metals, the followingmeasures have beenfollowed. 

(a) Post-process annealing carried under recrystallization temperaturerelieves internal stresses and 

increases work-hardening capacity. Thisimproves theoverall ductility of cold-worked materials[107,109,174]. 
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Fig. 11 (a)and (b) Thermal stability of ECAP processedcopper (99.96%), (c)SUS 316L stainless steel  

 

(b) Titaniumwith hcp crystal lattice shows high thermal and microstructural stability under cyclic loading, 

retaining its UFG microstructure up to 450 ºC [175] and exhibitingno cyclic softening during Low Cycle Fatigue 

(LCF) [149,176] for ECAP processed iron. 

(c) Stabilization by solutes which prevents grain coarsening by pinning of grain boundaries [47,179]. 

(d) Particle-induced stabilization [47,180,154]. 

(e) Grain boundary engineering was proposed byWatanabe [177,178] defines designing a high 

temperaturematerials exploits the idea of higher stabilityof special grain boundaries with low energy. 

 

3.4 Corrosion resistance 

 For prospective engineeringapplications, corrosion resistance is an important property and 

improvement of this property is also a challenging task. Corrosion insingle-phase polycrystalline metals is 

mainly depending upon grain size and SPD processed strengthening mechanism should deteriorate the corrosion 

behavior.  Corrosion could happen in three major aspects corrosion (chemical, electrochemical, pitting, 

etc.),stress corrosion cracking (SCC) and corrosion fatigue. Investigations carried out on only ECAP-processed 

copper based on these aspects [182-186]. In this investigation, SPD process as a better conclusion. While 

increasing the mechanical characteristics doesnot compromise the overall corrosion resistance andimproves the 

SCC and corrosion fatigue resistance also. This statement is confirmed by comparing ECAP processed copper 

with coarse-grained Cu polycrystals. There is a localized intergranular corrosion in coarse-grained Cu 

polycrystalswhere such a homogeneity of corrosion damage found in UFG Cu (Fig. 13a and b). These findings 

were followed by many researchers who found improved corrosion resistance of UFG Cu [187–188], Aland 

some Al-alloys [181,189–191], titanium [192],interstitial-free steel [193], austenitic stainless steels 316L[194] 

and 304 [195], FeCr [196], Mg [197] and Mg-basedalloy ZK60 [198]. 
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Fig. 13. SEM micrographs of ECAP copper (a) UFG stateafter ECAP and (b) a coarse-grained state after 

annealing at 823 K for 30 min [182]. 

 

IV. CONCLUSION 
 In these sections, we presented a brief history of SPD techniques, various SPD methods and the 

properties of SPD processed UFG materials. This review will serve as an introduction and reference for the 

readers those who are specializing in SPD process. This paper also gave fundamental problems of scientific 

challenges face by the industrial application and we highlighted those challenges throughout the manuscript.  

 However, there are large numbers of concepts which have establisheda thorough justification is missing 

in some concepts. Eventhough, the evidences for the responsibility ofbimodality of the grainstructure enhancing 

the good balance betweenstrength and ductility are delivered, there is some indications that the relationship 

between enhanced strength -ductility balance and the occurrence of a bimodalgrain structure are not proved. The 

enhancement of corrosion resistance and proliferation of the specimen results in some categorized where the 

surface phenomenon is affected by the link between surface and bulk properties. There is very limited research 

work has been carried out on this phenomenon.  

 SPD methods are basically extended from conventional metal working techniques and it is developed 

further for processing bulk materials. Now, this technique is extended further for some other purposessuch as 

efficient compaction of powders [199], particularlyfor producing alloys from blended elemental powders 

[200],and swarf [112,201]. Somehow, more new attractive applications were delivered [202]. Production 

ofarchitecturing and nanostructuring hybridmaterials usesadvanced SPD techniques. In particular,for producing 

a material in range of spiral architectures which is most beneficial for strength and ductility usestwist extrusion, 

HPT and some latest methods. This field willhave an outstanding future for the manufacturing ofinnovative 

materials and creative process design. 
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