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Abstract: The dynamical behavior of two coupled parametrically excited van der pol oscillator is investigated 

by using perturbation method.  Resonance cases were obtained, the worst one has been chosen to be discussed. 

The stability of the obtained numerical solution is investigated using both phase plane methods and frequency 

response equations. Effect of the different parameters on the system behavior is studied numerically. 

Comparison between the approximate solution and numerical solution is obtained.  

Keywords: Vibration control, nonlinear oscillation, perturbation technique, Resonance cases, Frequency 

response curves. 

 

I. INTRODUCTION 
Vibrations at most time are non-desirable, humans suffered from these bad vibrations, so it must be 

eliminating or at least controlled. The dynamic absorber is the most common methods for reduced the 

vibrations. Its importance tends to as it is need low coast, and it is a simple operation at one modal frequency.   

El-Badawy and Nayfeh [1] adopted linear velocity feedback and cubic velocity feedback control laws.Yang,Cao 

and Morris[2] use Mat lab for applying numerical methods. Amer [3] investigation the coupling of two 

nonlinear oscillators of the main system and absorber representing ultrasonic cutting process subjected to 

parametric excitation force. Non-linearities necessary introduce a whole range of phenomena that are not found 

in linear system [4], including jump phenomena, occurrence of multiple solutions, modulation, shift in natural 

frequencies, the generation of combination resonances, evidence of period multiplying bifurcations and chaotic 

motion [5-8]. In these systems the vibrations are needed to be controlled to minimize or eliminating the hazard 

of damage or destruction. There are two types for vibration control, active and passive control.  

Pinto and Goncalves [9] investigated the active control of the nonlinear vibration of a simply-supported 

buckled beam under lateral loading. One of most effective tools of passive control is dynamic absorber or the 

neutralizer [10]. Nabergoj et al [11] studied the stability of auto- parametric resonance in an external excited 

system. Abdel Hafz and Eissa [12] study the effect of nonlinear elastomeric torsion absorber to control the 

vibrations of the crank shaft in internal combustion engines, when subject to external excitation torque. Fuller, 

Elliot and Nelson [13] investigate the active control of vibrations which give many ideas and approaches for 

controlling chaos. Abe et al. [14] investigate the nonlinear responses of clamped laminated shallow shells with 

1:1 internal resonance. Eissa et al. [15-16] investigated saturation phenomena in non-linear oscillating systems 

subjected to multi-parametric and external excitation. Gerald [17] apply the numerical analysis to find out the 

solutions for the vibrations problems.  

Sayed and Kamel [18-19] investigated the effect of different controllers on the vibrating system and 

saturation control of a linear absorber to reduce vibrations due to rotor blade flapping motion. Kamel et al [20] 

studied the vibration suppression in ultrasonic machining described by non-linear differential equations via 

passive controller. Elena et al. [21] studied the formal analysis and description of the steady-state behavior of an 

electrostatic vibration energy harvester operating in constant-charge mode and using different types of 

electromechanical transducers .Orhan and Peter [22] investigate the effect of excitation and damping parameters 

on the super harmonic and primary resonance responses of a slender cantilever beam undergoing flapping 

motion.      

In this paper we studied vibration control of a nonlinear system under tuned excitation force. The 

method of multiple scale method is applied to obtain the approximate solution of the system. Vibration method 

is used to reduce the amplitude of vibration at the worst resonance case. The effect of different parameters are 

investigated, the comparison between the numerical solution and approximation solution obtained. 

 

II. MATHEMATICAL MODELING 
The considered system is described by the equations: 

2 2 2 2 2 3

1 1 1 1 1( 2 cos( )) ( ) ( )X f t X X Y X X aY X G X                                        (1) 
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2 2 2 2 2 3

2 2 2 2 2( 2 cos( )) ( ) Y ( )Y f t Y X Y bX Y Y G Y                                            (2) 

where the dots indicate differentiation with respect to t, X and Y are the generalized coordinate of the plant 

(main system) and the controller. 1 and 2  are incommensurate fundamental frequencies, the parametric 

excitation frequencies are 1 and 2 , the constants a and b  are of order 1, and   is a small parameter,

1 2,f f are the external excitation  forces, 1 2,G G  are the controller of the main system and the absorber. 

We can solve equations (1)&(2) analytically using multiple time scale perturbation technique as: 
2 3

1 1 1 2 1( , ) (T ,T ) (T ,T ) (T ,T ) O( )X t x x x                                                                              (3) 

2 3

1 1 1 2 1( , ) (T ,T ) (T ,T ) (T ,T ) O( )Y t y y y                                                                              (4) 

whereT t  represents a fast time scale characterizing motions with the natural and excitation frequencies, and 

1T t  represents a slow time scales characterizing modulation and phases of both modes of vibration. The 

times derivatives transform are reacted in terms of the new time scales as: 

1 ...............
d

D D
dt

                                                                                                                                (5) 

2
2 2 2

1 12
2 D ........

d
D D D

dt
                                                                                                                 (6)  

 

From equations (3) to (6) we have:  
2

3

1

0

( ; ) ( ) x ( )n

n

n

X t D D O   


                                                                                                          (7) 

2
2 2 2 3

1 1

0

( ; ) ( 2 ) x ( )n

n

n

X t D D D D O    


                                                                                   (8) 

2
3

1

0

( ; ) ( ) ( )n

n

n

Y t D D y O   


                                                                                                          (9) 

2
2 2 2 3

1 1

0

Y( ; ) ( 2 ) ( )n

n

n

t D D D D y O    


                                                                                 (10) 

 

Substituting from equations (3), (4) and (7)-(10) into equations (1) and (2) and equating the same power of   

we have: 
0 2 2

1O( ) : ( ) 0D x                                                                                                                                (11) 

              
2 2

2( ) 0D y                                                                                                                               (12) 

2 2 3 2

1 1 1 1 1 1( ) :( ) 2 2 cos( ) ( )O D x D D x f x t x x y D x           

2 2 3

1x ( ) ay ( ) ( )D x D x G D x                                                              (13) 

2 2 3 2

2 1 1 2 2 2( ) 2 2 cos( ) ( )D y D D y f y t y x y D y          

2 2 3

2( ) ( ) ( )y D y bx D y G D y                                                            (14) 

2 2 2 2 2

1 2 1 1 1 1 1 1 1 1( ) : ( ) 2 2 cos( ) 3 2O D x D x D D x x f t x x x y y          

2 2 2

1 1 1 1 1 1 1( ) ( ) x ( ) x ( )x y D x D x D x D x       

2 2

1 1 1 12 x x (D x ) ay ( ) ay ( ) 2ay y (D x )D x D x     

2 2

1 1 1 13 ( ) ( ) 3 ( ) ( )G D x D x G D x D x                                                      (15) 

2 2 2 2

2 2 1 1 1 1 2 2 1 1( ) 2 2 cos( ) 2D y D y D D y y f t x y x x y         

2 2 2

1 2 1 2 1 1 13 ( ) ( ) x ( ) x ( )y y D y D y b D y b D y       

2 2

1 1 1 12 ( ) y ( ) y ( ) 2 y ( )bx x D y D y D y y D y     
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2 2

2 1 2 13 ( ) ( ) 3 ( ) ( )G D y D y G D y D y                                                          (16) 

 

The general solution for equations (11) & (12) can be written in the form: 

1 1

1 1 1x ( , ) A(T ,T )e A(T ,T )e
i T i TT T  

                                                                                               (17) 

2 2

1 1 1( , ) (T ,T )e (T ,T )e
i T i Ty T T B B 

                                                                                             (18) 

 

where A and B are unknown complex functions, which can be determined by imposing the solvability 

conditions at the next approximation order by eliminating the secular terms, and solving resulting equation 

gives: 

                       (19) 

 
2 2 2 2 2 1 2 1 23 ( ) ( ) (2 ) (2 )

1 6 7 8 9 10

i T i T i T i T i Ty H e H e H e H e H e cc         
     

                                                   (20)
 

 

where ( , 1...10)nH n  are complex function in T1 and cc denotes the complex conjugate terms. Substituting 

equations (17),(18), (19), and (20) into equations (15) and (16) the following are obtained, after eliminating the 

secular term and solve it : 

1 1 1 1 1 1 1 2 1 23 5 ( ) ( ) ( ) ( )

2 11 12 13 14 15 16

i T i T i T i T i T i Tx H e H e H e H e H e H e        
     

1 2 1 2 1 1 1 1 1 2( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 4 )

17 18 19 20 21

i T i T i T i T i TH e H e H e H e H e             
    

1 2 1 1 1 1 1 2 1 2( 4 ) (3 ) (3 ) (3 2 ) (3 2 )

22 23 24 25 26

i T i T i T i T i TH e H e H e H e H e           
    

1 2 1 1 2 1 1 2 1 1 2 1( 2 ) ( 2 ) ( 2 ) ( 2 )

27 28 29 30

i T i T i T i TH e H e H e H e              
   

1 2 2 1 2 2 1 2 2 1 2 2( 2 ) ( 2 ) ( 2 ) ( 2 )

31 32 33 34

i T i T i T i TH e H e H e H e cc              
    

                (21)
 

2 2 2 1 2 1 2 2 2 23 5 ( ) ( ) ( ) ( )

2 35 36 37 38 39 40

i T i T i T i T i T i Ty H e H e H e H e H e H e        
     

2 1 2 1 1 2 1 2 1 2( 2 ) ( 2 ) (2 ) (2 ) (4 )

41 42 43 44 45

i T i T i T i T i TH e H e H e H e H e             
    

2 2 1 2 1 2 1 2 2 2(3 ) (4 ) (2 3 ) (2 3 ) (3 )

50 46 47 48 49

i T i T i T i T i TH e H e H e H e H e           
    

1 2 1 1 2 1 1 2 1 1 2 1(2 ) (2 ) (2 ) (2 )

51 52 53 54

i T i T i T i TH e H e H e H e              
   

1 2 2 1 2 2 1 2 2 1 2 1(2 ) (2 ) (2 ) (2 )

55 56 57 58

i T i T i T i TH e H e H e H e cc              
                       (22) 

 

III. STABILITY ANALSIS 
After studying the different resonance numerically to see the worst resonance; one of the worst cases 

has been chosen to study the system stability. The selected resonance case 1  and 2 1    .in this case 

we introduce the detuning parameter  according to:     

1 1 2 1 2and           (23)                                  

 

where 1  and 2  are called detuning parameters. Also for stability investigation, the analysis is limited to the 

second approximation. So our solution is only depend on T and 1T . Substituting equation (23) into equations 

(13) and (14) and eliminating the leads to the solvability conditions: 

1 12 2 3 2

1 1 1 1 1 1 1 12 3 2 2 3 0
i Ti A A A ABB i A i A A ia ABB iG A A f Ae                 (24)

2 12 2 3 2

1 2 2 2 2 2 2 22 3 2 2 2 3 0
i Ti B B B AAB i B i B B ib AAB iG B B f Be                    (25) 

To analyze the solution of equations (5.30) and (5.31), it is convenient to express A and B in the polar form as: 

1 1( )

1 1 1

1
( ) ( )

2

i TA T a T e  and 2 1( )

1 1 1

1
( ) ( )

2

i TB T b T e                                                                    (26)                                                                                                  

where A , B and 1 , 2  are the steady state amplitudes and phases of the motions respectively. Inserting 

equation (26) into equations (24) and (25) and equating real and imaginary parts, we obtain: 

1 1 1 1 1 1 2 1 23 ( ) ( ) ( 2 ) ( 2 )

1 1 2 3 4 5

i T i T i T i T i Tx H e H e H e H e H e cc         
     
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2 2 3 1
1 1 1 1 1 1 1 1 1

1

1 1 1
1 3 sin

2 2 8 2

f
a ab a G a a  



          
 

                                                                 (27)            

3 2 1
1 1 1 1 1 1 1 1

1 1 1

1 3 1
( ) cos

2 4 2 2

f
a a b a a  

  

 
     

 
                                                                          (28)                     

2 2 3 2
1 2 1 1 2 2 1 1 2

2

1 1
1 3 sin

4 8 2

f
b a b b G b b  



           
 

                                                               

(29)                   

3 2 2
1 2 2 1 1 1 1 2

2 2 2

1 3 1
b ( ) cos

2 4 2 2

f
b a b b  

  

 
     

 
                                                                      (30)                 

where 1 1 1 12T     and 2 2 1 22T    . 

For steady state solutions,
1 1 1 2 0a b          and the periodic solution at the fixed points 

corresponding to equations (27)-(30) is given by: 

2 2 2 1
1 1 1 1 1 1

1

1 1
1 3 sin

4 2

f
G a ab  



 
        

 
  (31) 

2 2 1
1 1 1 1

1 1 1

3 1
cos

4 2

f
a b 

  
      (32) 

2 2 2 2
2 2 1 2 1 2

2

1 1
1 3 sin

8 4 2

f
G b a b  



 
         

 
     (33) 

2 2 2
2 1 1 2

2 2 2

3 1
cos

4 2 2

f
b a 

  
         (34) 

 

Squaring equations (5.41) and (5.42) and summation, yields: 

 
2 2

2
2 2 2 2 22 2 2 1

1 1 1 1 2 2 1 2 1 1 2 1 2 2

2 2 1 1 2 2 1

21 2 1 3 1
1 3 cos cos

4 3 2 4 3 2

f f f
G a a a a a


       

      

       
                  

        

2 22 2
1 2 1 2

2 2

4 1
cos

3 2

f
b a


 

 

 
   

 
 (35) 

 

Similarly, from equations (33) and (34), we get: 

 
22 2

2 2 2 2 2 2
2 2 1 2 1 2 1 1 2

2 2 2

1 1 3 1
1 3

8 4 4 2 4

f
G b a b b a  

  

   
          

    
 (36) 

 

From equations (35) and (36), we have the following cases: 

Case1: 0a b   (the trivial solution). 

Case2: 0a  , 0b  , in this case, the frequency response equation (35) is given by: 

 
22 2

2 2 2 1
1 1 1 1 1 2

1 1

1 3
1 3 0

4 4

f
G a a 

 

  
      

   
  (37) 

After that we have: 

2
2 2 2 41 1

1 1 1 1 1 1 2 4 2

1 1 1 1

3 161 9
1 6 9 0

2 16

a f
G G

a
   

  

   
         
   

(38) 
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The solution of algebraic equation (38) has two roots, given by: 

1
2 2

2 2 4 21 1
1 1 1 1 1 12 4 2

1 1 1 1

3 161 1 18
1 6 9

2 2 2

a f
G G a

a
  

  

 
          

  

 (39) 

Case3: 0a  , 0b  , in this case the frequency response equations (35) and (36) are given by:  

 
2

2 2 2 2
1 1 1 1 2 2 1 2

2 2

1 2 1
1 3 cos

4 3 2

f
G a a a    

 

   
        

    

 

2
2

2 22 2 1
1 1 2 1 2 2

1 1 2 2 1

23 1
cos

4 3 2

f f
a a


  

    

  
       

  
                                                                   (40)  

 

2.1 Linear Solution: 

To study the stability of the linear solution of the obtained fixed points, let us consider A and B in the 

polar forms: 

  1 1

1 1 1

1
( )

2

i TA T p iq e   ,   2 1

1 2 2

1
( )

2

i TB T p iq e                                                                               

(41) 

where 1 1 2, ,p q p and 2q  are real functions in T1. 

Substituting equation (41) into the linear parts of equations (24) and (25) and equating the imaginary and real 

parts, we have the following cases: 

 

Case1: ( 0a  , 0b  ) 

 
1

1 1 1 1 1

1

1 1
0

2 2

f
p p q 



 
      

 
                                                                                                            (42) 

1
1 1 1 1 1

1

1 1
0

2 2

f
q p q 



 
     

 
                                                                                                                (43) 

The stability of the linear solution is obtained from the zero characteristic equation: 

1
1 1

1

1
1 1

1

1 1

2 2 2
0

1 1

2 2 2

f

f

  


  


 
    

 


 
   

 

                                                                                                          (44) 

 

Then, we have that: 

2

1
1,2 1 12

1

1

2

f
  



 
   

  

                                                                                                                              (45) 

Case2: ( 0a  , 0b  ) 

1
1 1 1 1 1

1

1 1
0

2 2

f
p p q 



 
      

 
                                                                                                             (46) 

1
1 1 1 1 1

1

1 1
0

2 2

f
q p q 



 
     

 
                                                                                                                (47) 
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2
2 2 2 2 2

2

1
0

2

f
p p q 



 
      

 
                                                                                                             (48) 

2
2 2 2 2 2

2

1
0

2

f
q p q 



 
     

 
                                                                                                                 (49) 

 

Equations (46)-(49) can be written in the matrix form: 

1
1 1 1

1
1

1
1 11 1

1

2
22 22

2

2
2

1 2
2

2

1 1
0 0

2 2

1 1
0 0

2 2

1
0 0

2

1
0 0

2

f
p p

f
q q

f
pp

f q
q

 


 


 


 


                                                                                   

                                  (50) 

 

The stability of a particular fixed point with respect to perturbation proportional to 1exp( )T  is determined by 

zeros of characteristic equation:  

1
1 1

1

1
1 1

1

2
2 2

2

2
1 2

2

1 1
0 0

2 2

1 1
0 0

2 2
0

1
0 0

2

1
0 0

2

f

f

f

f

  


  


  


  


 
    

 

 
   

 


 
    

 

 
   

 

                                                       (51) 

 

After extract we obtain that: 
4 3 2

1 2 3 4 0r r r r                                                                                                                             (52) 

 

According to Routh-Huriwitz criterion, the above linear solution is stable if the following are satisfied: 
2

1 1 2 3 3 1 2 3 1 4 40, 0, ( ) 0, 0r r r r r r r r r r r       .                                                                                    (53) 

 

2.2 Non-Linear Solution: 
To determine the stability of the fixed points, one lets: 

1 1 0 1, , ( 1,2)m m ma a a b b b m                                                                                             (54) 

where ,a b  and 0m  are solutions of equations (27)-(30) and 1 1,a b , 1m  are perturbations which are assumed 

to be small comparing to  ,a b and 0m . Substituting equation (54) in to equations (27)-(30) and keeping only 

the linear terms in 11 11 1, , ma b  we obtain: 

1. For the case ( 0, 0)a b  , we have: 



Active Control And Dynamical Analysis of two Coupled Parametrically… 

www.irjes.com                                                                    14 | Page 

2 2 2

11 1 10 1 1 10 1 10 11

1

1 3 9 1
[ sin ]

2 8 8 2
a a G a f a  




     1 10 10 11

1

1
[ a cos ]
2

f  


                       (55) 

1
11 10 1 11 11 1 10 11

10 1 1 10 1

9 1 1
[ cos ] [ sin ]

4
a f a f

a a


   

  
                                                       (56) 

 

The stability of a given fixed point to a disturbance proportional to exp( )t  is determined by the roots of: 

2 2 2

1 10 1 1 10 1 10 1 10 10

1 1

1
10 1 11 1 10

10 1 1 10 1

1 3 9 1 1
sin a cos

2 8 8 2 2
0

9 1 1
cos sin

4

a G a f f

a f f
a a

   
 


 

  

 
   

  
 

  
 

                                               (57) 

 

 

Consequently, a non-trivial solution is stable if and only if the real parts of both eigenvalues of the coefficient 

matrix (57) are less than zero. 

 

2. For the practical solution ( 0, 0)a b  , we have: 

2 2 2

11 1 10 1 1 10 1 10 11 10 10 11 1 10 10 11

1 1

1 3 9 1 1 1
[ sin ] [ ] [ a cos ]

2 8 8 2 2 2
a a G a f a a b b f    

 


                (58) 

21
11 10 10 1 11 11 10 11 1 10 11

10 1 1 10 1 10 1 1

9 1 1 1 1
[ cos ] [ ] [ sin ]

4 2
a b f a b b f

a a a


   

    
                       (59) 

2 2 2

11 10 10 11 2 10 10 2 2 10 2 20 11 11 2 10 20 21

2 2

1 1 3 1 9 1 1
[ ] [ sin ] [ cos ]

2 2 8 4 8 2 2
b ba b a b ba G b f b f b     

 

           (60) 

2
21 10 11 10 2 20 11 2 20 21

2 10 2 2 10 2

1 9 1 1
[ ] [ cos ] [ sin ]

4
a a b f b f

b b


   

   
     

                                     (61) 

 

The stability of a particular fixed point with respect to perturbations proportional to exp( )t  depends 

on the real parts of the roots of the matrix. Thus, a fixed point given by equations (58)-(61) is asymptotically 

stable if and only if the real parts of all roots of the matrix are negative. 

 

IV. NUMERICAL RESULTS: 
The nonlinear dynamical system is solved numerically using Rung -Kutta fourth order method by using 

Maple 16 software. At non resonance case (basic case) as shown in Fig.1, we can see that the steady state 

amplitude without controller is about 0.08 and with controller is about0.01. 

 

3.1) Resonance cases 

Sub harmonic resonance, 1 12  , for the main system the phase plane is a limit cycle and its steady 

state amplitude which is the largest without controller is about 0.9 and about 0.17, which appears in Fig.(3). In 

Fig (4), Sub harmonic resonance 2 22  , for the main system the phase plane is a limit cycle and its steady 

state amplitude without controller is about 0.0004 and about 0.02.  

 

3.2) Effect of control 

The effect of controller appears at Fig.(5) and Fig.(6), in Fig.(5), the amplitude of the main system at 

Sub harmonic resonance: when 1 12  ,  is decreasing to 0.05. Similarly for the Fig.(6), the amplitude of the 

main system Sub harmonic resonance: when 2 22   decreasing to 0.01. 

 

3.3) Effect of parameters 
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For the damping coefficient 1 , Fig(7) (a) shows that the steady state amplitude of the main system is 

monotonic increasing function. For the parameter 1 , Fig.(7) (b) shows that the steady state amplitude of the 

main system  is monotonic decreasing function. But that the steady state amplitude of the main system is 

monotonic increasing function of the excitation forces 1 2,f f , Fig (7) (c),(f) shows. 

 

3.4) Frequency response curves 

The frequency response in the second case ( 0, 0)a b   which represented by equation (37) is a 

nonlinear algebraic equation solved numerically of the amplitude against the detuning parameter 1 . Fig.(8)(a) 

shows that the steady state amplitude is monotonic decreasing function on the natural frequency. Fig.(8)(b) 

shows that the steady state amplitude is a monotonic increasing function in the non-linear parameter 1 . The 

excitation force 1f of the main system is a monotonic increasing function at the steady state amplitude which 

appeared on the Fig.(8)(c). The steady state amplitude is a monotonic decreasing function on the gain 1G . 
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Fig.(7), Effects of different parameters. 
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Fig.(8): Response curves  at ( 0, 0)a b  . 

 
 

 
 

 
Fig.(9): Response curves  at ( 0, 0)a b   

4) Comparison between approximation solution and numerical solution 

In this subsection we compare between the numerical solutions (which we obtained by using Maple 16 

software) and the approximation solution (which we obtained by using equations (58) to (61)). All this 

comparison done in the resonance sub-harmonic case which we choose to be the worst we obtained that there is 

a good agreement between the two solutions. 

1 0.35f 

 

1 0.15f  



Active Control And Dynamical Analysis of two Coupled Parametrically… 

www.irjes.com                                                                    19 | Page 

 

 
Fig.(10): the comparison between the numerical solution (______)and approximation       solution(----------) 

 

V. CONCLUSION 
The dynamical behavior of two coupled parametrically excited van der pol oscillator is investigated by 

using perturbation method.  Resonance cases were obtained, the worst one has been chosen to be discussed 

which is 1 12  , .Hence the stability of the system and controller is studied using the frequency response 

functions from the above study, the following results are concluded: 

1. The steady state of the system without controller is about 0.08 which is considering basic case. 

2. The damping coefficient 1 is monotonic decreasing function. 

3. The natural frequency 1 is monotonic decreasing function. 

4. The forces 1 2,f f are monotonic increasing functions. 

5. The numerical solution has a good agreement with the approximation solution. 
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