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Ab7stract In this paper, we have studied various properties of the F- sturcture manifold satisfying
F'+F=0. Nijenhuis tensor and metric F-structures have also been discussed.
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I.  INTRODUCTION

Let M" be a7differentiable manifold of class C” and F be a (1,1) tensor of class C”, satisfying
a1y F ' +F=0

we define the opergtors I and m on M" by

w2 |I= , m=1+F°®

From (1.1I) and (1.2), we get ) )

(1.3) +m=1, =], m“=m, Im=ml=
IF=Fl=F, Fm=mF =0,

where | denotes the identify operator.
Theorem (1.1): Let the3(1 1) tensors p and q be defined by

14 p=m+F

p and g are invertible operators sz%tlsfymg

—qpq pP=q’, p°=0’, Sl thy
pl=—ql = p I_q I

(1.5) o

, g=m—F>,then
2

+I
——| pm= qm p'm qm

Proof: Using (1.2), (1. 3) and (1.4), we have
(1.6) pCl1 qp =1, Thus

(1.7)

Also, using él 1) (1 3) and (1 4), we get

(1.8) p™=q,

From (1.7) and (1.8) we have p =(= p Other results follow similarly.
Theorem (1. 2) Let the (1,1) tensors a and ,3 be defined by

(1.9)

—I+F ~-F°,
(1.10) a2+,8 =0, &® +4a = O ﬂ+4,8 0

Proof: Usmg (1.2), (1 3) and (1.9), we get
o’ =2F°, ,B —=-2F7 Thus we get &’ +ﬂ =0
The other results follow similarly.
Theorem (1.3): Define the (1,1) tensors g/ and O by
Q1) y= m+F°% 6=m—F?%, then

(112) ¥

—}/and5 [

Proof: Using (1. 2% (2.3) and (1. 11) we get

113) y=m-I,

The Nijenhujs tensars c
XY
X, Y
XY

21 N
22 N
23 N
Theorem 2.1): Let
24 )

(ii)

(iii)

(iv)

(V)

(vi)

N
mN
N
N
N
N

y =1 thus y~ —]/and5 m+1=1

1. NIJENHUIS TENSOR
respondlng to the operators F I, m be defined as

ML BE I UG i

,ms sfy(l)a (12) then

mX,m F [mX,mY ]
(mX,m

mX,mY —I mX mY
IX 1Y mo[

IX,mY)=

mX,1IY) =
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Proof:

With proper replacements of X and Y in (2.1), (2.2) and (2.3), and using (1.3) we get the reuslts.

I1.  METRIC F-STRUCTURE

Let the Riemannian metric g be such that

(3.2)
Then
(3.2)

(3.3)
3. 4)

F(X,Y) =g (FX,Y) is skew- symmetric.
FX,Y):—g (X,FY), and

y J ¢ is called metric F-structrure.

, Where

Theorem (3,1): On the metjlc structrure F, satisfying (1. 1§ we have

g(F°X FY

m(X,Y (m>g< Y)= )g(;n,%(v’).

)
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