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I. INTRODUCTION 

The first formal definition of semiring was introduced in the year 1934 by Vandiver. 

However the developments of the theory in semirings have been taking place since 1950. A 

semiring is basic structure in Mathematics. The ring theory and semigroup theory influenced 

on the developments of the semiring theory and ordered semiring theory. Certainly the first 

mathematical structure we know–the natural number set N is a semiring.  semirings play a 

significant role  in different areas of mathematics as commutative, non-commutative ring 

theory, graph theory, combinatorics and the mathematical modeling of quantum physics and 

parallel computation systems. More details concerning such applications can be found in [7, 8, 

9].  

In a semiring S, an element a is Multiplicatively Subidempotent if           a + a
2 

= a. A 

semiring S is Multiplicatively Subidempotent if and only if each of its elements is 

Multiplicatively Subidempotent. Multiplicatively Subidempotent semiring plays an important 

role in modal logic.  

  Section one deals with introduction. Section two contains definitions. In last section 

we have given some results on multiplicatively subidempotent semiring and on its ordering.   

 

II. PRELIMINARIES 

A partially ordered semigroup (p. o. s. g) in which any two elements are comparable 

is totally ordered semigroup (t. o. s. g.) or fully ordered semigroup   (f. o. s. g.). A triple (S, +, 

•) is a semiring if S is a non-empty set and “+, •” are binary operations on S satisfying that 

(i) The additive reduct (S, +) and the multiplicative reduct (S, •) are  semigroups. 

(ii) a (x + c) = ax + ac and (x + c) a = xa + ca, for all a, x, c in S. 

A semiring (S, +, •) is denoted by S. 

 A semiring S is zerosumfree if a + a = 0, for all a in S. Here zero is an additive 

identity. A semiring S is zero-square if a
2
 = 0, for all a in S. Here zero is multiplicative zero. A 

semigroup (S, •) is a band if a
2
 = a for all a in S. A semigroup (S, +) is a band if a + a = a for 

all a in S. A semiring S is idempotent if a + a = a and a
2
 = a for all a in S. A semiring S is 

totally ordered semiring (t.o.s.r) if there exists a partially order „ ‟ on S such that (i) (S, +) is 

a t. o. s. g. (ii) (S, •) is a t. o. s. g. It is usually denoted by (S, +, •, ).  An element a in a 

partially ordered semigroup (S, •, ) is  non-negative (non-positive) if a
2
   a (a

2
  a). A 

partially ordered semigroup (S, •, ) is non-negatively ordered (non-positively ordered) if 

every element of S is non-negative (non-positive). 

In a totally ordered semiring (S, +, •, ) 

(i) (S, +, ) is positively totally ordered (p.t.o), if a + x  a, x for all a,  x in S                      
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(ii) (S, •, ) is positively totally ordered (p.t.o), if ax  a, x for  all a, x  in S. 

(iii) (S, +, ) is negatively totally ordered (n.t.o), if a + x ≤ a, x for all a, x in S                      

 (iv) (S, •, ) is positively totally ordered (n.t.o), if ax ≤ a, x for  all a, x  in S. 

III. STRUCTURE OF MULTIPLICATIVELY SUBIDEMPOTENT SEMIRINGS: 

Proposition 3.1: Suppose „a‟ in S is a multiplicatively subidempotent element.  

(i) If „a‟ satisfies the condition x + a = x for all x in S. Then x + a
n  

= x  for all x in S 

and n ≥ 1. 

(ii) If S contains multiplicative identity „1‟ and „a‟ is left cancellable with  respect to •, 

then x + a
n
x = x for all x in S and n ≥ 1. 

(iii) „a‟ in (S, +) semigroup is regular and (S, +) is commutative, then            ax + a = a.   

 

Proof: (i) By hypothesis „a‟ is multiplicatively subidempotent i..e a + a
2
 = a  

  implies x + a + a
2
 = x + a  

Since x + a = x we obtain x + a
2
 = x  (1) 

  x + a.a = x which implies x + (a + a
2
) a = x  

Using equation (1) in above we get x + a
2
 + a

3
 = x  

The above equation reduces to x + a
3
 = x  (2) 

   x + (a + a
2
) a

2
 = x   x + a

3 
+ a

4
 = x     x + a

4
 = x  (3) 

Generalizing the above three equations we obtain x + a
n
 = x  

Hence x + a
n
 = x for all x in S and n ≥ 1 

 

(ii) Again let us consider a + a
2
 = a  

By hypothesis S contains multiplicative identity „1‟ then a (1 + a) = a.1 

Since „a‟ is left cancellable with respect to „•‟ implies 1 + a =1  

 x + ax = x  (1) 

Again let us take a + a
2 

= a  ax + a
2 

x = ax this can also be written as                        

x + ax + a
2 
x = x + ax  

Using equation (1) in above we get x + a
2 
x = x   (2) 

 ax + a
3 
x = ax  x + ax + a

3
x = x + ax  

 x + a
3 
x = x for all x in S   (3) 

Continuing like this we obtain x + a
n
x = x for all x in S and n ≥ 1 

(iii) By hypothesis „a‟ in S is multiplicatively subidempotent, a + a
2 
= a  

In (S, +) semigroup „a‟ is regular then for an element „a‟ there exists an element x in S 

such that a + x + a = a implies a (a + x + a) = a.a   

 a
2
 + ax + a

2
 = a

2 
 a + a

2
 + ax + a

2
 = a + a

2  
 a + ax + a

2
 = a 

 Using (S, +) commutative in above we get ax + a + a
2
 = a   ax + a = a  

Thus ax + a = a where „x‟ depends on element „a‟ 

Theorem 3.2: Let S be a multiplicatively subidempotent semiring and (S, +) be left 

cancellative. Then (S, •) is a band if and only if (S, +) is a band.  

Proof: Given that S is multiplicatively subidempotent semiring a + a
2 
= a  

Using (S, •) band in above we get a + a = a for all a in S 

Thus (S, +) is a band 

To prove the converse part let us consider a + a
2  

= a for all a in S  (1) 

Since a + a = a for all a in S, then equation (1) reduces to a + a
2 
= a + a 

By applying left cancellation law we get a
2 
= a for all a in S 

Thus (S, •) is a band 
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Theorem 3.3: Suppose S is a zerosumfree semiring with additive identity 0. Then S is 

multiplicatively subidempotent semiring if and only if S is a          zero-square semiring. 

Proof:  By the definition of zerosumfree semiring a + a = 0 for all a in S 

   Also we have a + a
2
 = a for all a in S this implies a + a + a

2 
= a + a 

By using zerosumfree semiring in above we obtain a
2
 = 0 for all a in S  

Thus S is a zero-square semiring 

To prove the converse part let us take a
2
 = 0 implies a + a

2
 = a + 0 

 i.e  a + a
2
 = a for all a in S 

Therefore S is multiplicatively subidempotent semiring 

Theorem 3.4: Suppose S is a totally ordered multiplicatively subidempotent semiring and (S, 

+) is positively totally ordered (negatively totally ordered). If S contains multiplicative 

identity‟1‟ and (S, •) is left cancellative, then 1 is the maximum (minimum) element. 

Proof: By hypothesis we have a + a
2
 = a for all a in S which implies                a (1 + a) = 

a.1 

Using (S, •) left cancellation law in above we acquire 1 + a = 1 

Also given that (S, +) is p.t.o implies 1 = 1 + a ≥ a   1 ≥ a, for a  S 

Thus 1 is the maximum element 

In the same way if (S, +) is negatively totally ordered then 1 is the minimum element 

 

Theorem 3.5: If S is a totally ordered multiplicatively subidempotent semiring, (S, •) is non-

positively ordered (non-negatively ordered) then (S, +) is non-negatively ordered (non-

positively ordered). 

Proof: Given that S is multiplicatively subidempotent, a + a
2
 = a  

Since (S, •) is non-positively ordered a
2 
≤ a implies a + a

2 
≤ a + a   

The above equation can be reduced to a ≤ a + a   a + a  a   

Thus (S, +) is non-negatively ordered 

Similarly if (S, •) is non-negatively ordered then (S, +) is                 non-positively 

ordered 
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