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Abstract:- The dynamics of discrete-time prey-predator model are investigated. The result indicates that the 

model undergo a flip bifurcation which found by using center manifold theorem and bifurcation theory. 

Numerical simulation not only illustrate our results, but also exhibit the complex dynamic behavior, such as the 

periodic doubling in period-2, -4 -8, quasi- periodic orbits and chaotic set. Finally, the feedback control method 

is used to stabilize chaotic orbits at an unstable interior point. 
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I. INTRODUCTION 
 The mathematical modeling of ecological problems has a long and successful history. It is well known 

that the mathematical model has system of differential \difference equations that describing the dynamics of the 

interacting of species [1-3]. One of the following pioneering examples in mathematical ecology is the following 

continuous-time population model with two equations:   

 
𝑥 = 𝑥 𝑎 − 𝑏𝑦 −𝑚𝑥 

𝑦 = 𝑦(−𝑐 + 𝑑𝑥 − 𝑛𝑦)
                                           (1.1) 

Where 𝑥(𝑡) and 𝑦(𝑡) are denoted to the population of two species at time𝑡. If the parameters 𝑎, 𝑏, 𝑐, 𝑑,𝑚 and 𝑛  

are all positive then these differential equations are used to describe two species with limit growth called 

competing species [4-6]. If 𝑚 = 𝑛 = 0  with the positive parameters 𝑎, 𝑏, 𝑐  and 𝑑  then these differential 

equations called the predator-prey model of Volterra and Lotka, (see [7-9] and their references). 

 Obviously, if 𝑎 = 𝑚 then the first equation in the model (1.1) represents the reproduction rate per 

individual. A different equation holds for the second population, so we can see the system of ordinary 

differential equations as in: 

 
𝑥 = 𝑎𝑥 1 − 𝑥 − 𝑏𝑥𝑦

𝑦 = 𝑐𝑦 1 − 𝑦 + 𝑏𝑥𝑦
                                                 (1.2) 

Where 𝑎, 𝑏 and 𝑐 are positive parameters such that 𝑎 and 𝑐 are the intrinsic growth rate of prey and predator 

densities, respectively. If 𝑏 = 0 then each population growth expontialy [6]. 

By applying the forward Euler’s scheme to the model (1.2)  we obtain the discrete-time prey-predator model as 

follows: 

 
𝑋𝑛+1 = 𝑋𝑛 + ℎ[𝑎𝑋𝑛 1 − 𝑋𝑛 − 𝑏𝑋𝑛𝑌𝑛 ]

𝑌𝑛+1 = 𝑌𝑛 + ℎ[𝑐𝑌𝑛 1 − 𝑌𝑛 + 𝑏𝑋𝑛𝑌𝑛]
                                        (1.3) 

Where ℎ is the step size.  

 The following is the organization of this paper: In the second section, we discuss the existence and 

local stability of possible fixed points of model(1.3). In the third section, we show that the model (1.3) undergo 

flip bifurcation with choosing ℎ  as a bifurcation parameter. In the next section, we present the numerical 

simulation which not only illustrate our results with theoretical analysis but also exhibit the complex dynamic 

behavior in the model(1.3). In the fifth section, the feedback control method is used to control chaotic orbits at 

an unstable positive fixed point. The conclusion is given in the last section. 

 

II. ANALYSIS OF FIXED POINTS 
 In this section, the possible fixed points are obtained. The local stability conditions are organized and 

proposed with some propositions as follow: 

Let the model (1.3) equations equal to the vector (𝑋, 𝑌)𝑇  then with simple computation we get the following 

fixed points: 

1)  𝑋, 𝑌 = (0,0) is the origin which always exists.  

2)  𝑋, 𝑌 = (1,0) is the first axial fixed point which means the prey population exist with absence of 

predator one. 
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3)  𝑋, 𝑌 = (0,1) is the second axial fixed point which means the predator population exist with absence 

of prey one. 

4)  𝑋, 𝑌 = (𝑥∗, 𝑦∗) is the unique positive fixed point which exist if and only if 𝑎 > 𝑏, where 𝑥∗ =  
𝑎𝑐−𝑏𝑐

𝑎𝑐+𝑏2 

and 𝑦∗ =
𝑎𝑐+𝑎𝑏

𝑎𝑐+𝑏2 . 

In the model (1.3) , we have got two axial fixed points (1,0)  and (0,1)  becouse each prey and predator 

population has no overlap between successive generations. So, their population evolves in discrete-time steps 

and can be models by the logistic equation [9]. 

Now, to study the stability of each fixed point we shall obtain the variation matrix and its characteristic 

equation. In general with (𝑋, 𝑌) fixed point we get the following Jacobian matrix: 

 𝐽((𝑋, 𝑌)) =  1+ℎ 𝑎 1−2𝑋 −𝑏𝑌            −ℎ𝑏𝑋
      ℎ𝑏𝑌                                                 1+ℎ[𝑐 1−2𝑌 +𝑏𝑋]

           (2.1) 

And characteristic equation of 𝐽((𝑋, 𝑌)) is: 

𝐹 𝜆 = 𝜆2 + 𝑇𝑟 𝐽((𝑋, 𝑌)) 𝜆 + 𝐷𝑒𝑡(𝐽((𝑋, 𝑌)))                     (2.2) 
Where  

𝑇𝑟 𝐽((𝑋, 𝑌)) = 2 + ℎ[𝑎 1 − 2𝑋 + 𝑏𝑋 − 𝑏𝑌]  
and 

 𝐷𝑒𝑡 𝐽((𝑋, 𝑌)) = 1 + ℎ 𝑎 1 − 2𝑋 + 𝑐 1 − 2𝑌 + 𝑏𝑋 − 𝑏𝑌 + ℎ2[𝑎 1 − 2𝑋 − 𝑏𝑌][𝑐 1 − 2𝑌 + 𝑏𝑋] 
Hence the model (1.3)  is a dissipative dynamical system if  1 + ℎ 𝑎 1 − 2𝑋 + 𝑐 1 − 2𝑌 + 𝑏𝑋 − 𝑏𝑌 +
ℎ2[𝑎1−2𝑋−𝑏𝑌][𝑐1−2𝑌+𝑏𝑋]<1 [10]. 

 The next propositions provide the local stability conditions near each fixed point with respect to the 

Lemma in [9]. 

Proposition 2.1: The origin fixed point (0,0) is source. 

Obviously, the roots of the origin’s characteristic equation are   𝜆1 = 1 + ℎ𝑎 and 𝜆2 = 1 + ℎ𝑐 which are both 

greater than one, i.e.   𝜆𝑖 > 1 for all 𝑖 = 1,2. 

Proposition 2.2: The prey axial fixed point (1,0)  is saddle if0 < ℎ <
2

𝑎
, source ℎ >

2

𝑎
 and non-hyperbolic 

ifℎ =
2

𝑎
. 

We can see that ifℎ =
2

𝑎
, one of the eigenvalues of the fixed point (1,0) is −1 and other is not one with module. 

Thus, the flip bifurcation may occur when the parameters vary in the neighborhood ofℎ =
2

𝑎
. 

Proposition 2.3: There exist at least four different topological types of the predator axial fixed point (0,1) for 

all values of parameters, which means (0,1) is: 

a) Sink if 𝑎 < 𝑏 and 0 < ℎ <  min⁡{
2

𝑐
,

2

𝑏−𝑎
}; 

b) Source if 𝑎 < 𝑏 and ℎ >  max⁡{
2

𝑐
,

2

𝑏−𝑎
} (or 𝑎 > 𝑏  and ℎ >

2

𝑐
); 

c) Non-hyperbolic if 𝑎 = 𝑏, ℎ =
2

𝑐
 or ℎ =

2

𝑏−𝑎
; 

d) Saddle otherwise. 

We can easily see that one of the eigenvalues of the predator axial fixed point(0,1) is −1 and other is neither 1 

nor −1 if the topological type (3) of proposition (2.3)  holdes. Thus, the fixed point (0,1) can undergo flip 

bifurcation because the system (1.3) restricted to logistic equation [8]. 

Proposition 2.4: if 𝑎 > 𝑏 then the unique positive fixed point(𝑥∗, 𝑦∗) is: 

1. Sink if  one of the following conditions holds: 

A. ∆≥ 0 and 0 < ℎ < ℎ∗; 
B. ∆< 0 and 0 < ℎ < ℎ∗∗∗; 
2. Source if  one of the following conditions holds:                                                                                            

A. ∆≥ 0 and ℎ > ℎ∗∗; 
B. ∆< 0 and ℎ > ℎ∗∗∗; 
3. Non-hyperbolic if  one of the following conditions holds: 

A. ∆≥ 0 and ℎ = ℎ∗ or ℎ∗∗; 

B. ∆< 0 and ℎ = ℎ∗∗∗; 
4. Saddle  if  the following conditions holds: 

∆≥ 0 andℎ∗ < ℎ < ℎ∗∗. 

Where  

ℎ∗ =
𝑎𝑐 𝑎 + 𝑎𝑐 + 𝑎𝑏 − 𝑏 +  ∆

𝑎𝑐 + 𝑏2
 

ℎ∗∗ =
𝑎𝑐 𝑎 + 𝑎𝑐 + 𝑎𝑏 − 𝑏 −  ∆

𝑎𝑐 + 𝑏2
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ℎ∗∗∗ =
 𝑎𝑐 + 𝑏2 (𝑎 + 𝑎𝑐 + 𝑎𝑏 − 𝑏)

 𝑎 − 𝑏  𝑏 + 𝑐 (𝑎 − 𝑏2)
 

and  

∆= 𝑎2𝑐2(𝑎 + 𝑎𝑐 + 𝑎𝑏 − 𝑏)2 − 4 𝑎 − 𝑏  𝑎𝑐 + 𝑎𝑏 (𝑎2𝑐2 + 𝑏2𝑐) 

From proposition(2.4), if condition(𝐴) in(3)holds then one of the eigenvalues of the Jacobian matrix𝐽(𝑥∗, 𝑦∗) is 

−1 and the other is neither 1 nor−1. We can rewrite condition(𝐴) as the form(𝑎, 𝑏, 𝑐, ℎ) ∈ 𝑀1 ∩𝑀2 . Where 

𝑀1 = { 𝑎, 𝑏, 𝑐, ℎ : ℎ = ℎ∗, 𝑎 > 𝑏, ∆≥ 0, 𝑎, 𝑏, 𝑐 > 0} and 𝑀2 = { 𝑎, 𝑏, 𝑐, ℎ : ℎ = ℎ∗∗, 𝑎 > 𝑏, ∆≥ 0, 𝑎, 𝑏, 𝑐 > 0}. 

 In the following section we will see that there may be a flip bifurcation around the fixed (𝑥∗, 𝑦∗) if ℎ 

varies in the small neighborhood of ℎ∗ or ℎ∗∗ and 𝑎, 𝑏, 𝑐, ℎ ∈ 𝑀1 or 𝑎, 𝑏, 𝑐, ℎ ∈ 𝑀2. 

 

III. BIFURCATION ANALYSIS 
 Based on the analysis on the section2, in this section we choose the step size ℎ as bifurcation parameter 

to study the flip bifurcation of (𝑥∗, 𝑦∗) by using the center manifold theorem and bifurcation theory [11, 12]. 

To do this we make ℎ  varies in the small neighborhood of ℎ∗  and 𝑎, 𝑏, 𝑐, ℎ∗ ∈ 𝑀1 . We can give similar 

argument for the case in which ℎ varies in small neighborhood of ℎ∗∗ and 𝑎, 𝑏, 𝑐, ℎ∗∗ ∈ 𝑀2.  

Taking the parameters  𝑎, 𝑏, 𝑐, ℎ∗ ∈ 𝑀1  arbitrarily, given a perturbation ℎ∗  of parameter h, we consider 

model(1.3) with perturbation  ℎ∗ as follows: 

 
𝑋𝑛+1 = 𝑋𝑛 +  ℎ + ℎ∗ [𝑎𝑋𝑛 1 − 𝑋𝑛 − 𝑏𝑋𝑛𝑌𝑛 ]

𝑌𝑛+1 = 𝑌𝑛 +  ℎ + ℎ∗  𝑐𝑌𝑛 1 − 𝑌𝑛 + 𝑏𝑋𝑛𝑌𝑛     
                                                        (3.1) 

Where ℎ∗ ≪ 1. 

Let 𝑈𝑛 = 𝑋𝑛 − 𝑋∗ and𝑉𝑛 = 𝑌𝑛 − 𝑌∗, then we transform the positive fixed point  (𝑥∗, 𝑦∗) of (3.1) into the origin. 

By calculating we obtained: 

 
𝑈𝑛+1 = 𝑈𝑛 +  ℎ + ℎ∗ [𝑎 𝑈𝑛 + 𝑋∗  − 𝑎 𝑈𝑛 + 𝑋∗  2 − 𝑏(𝑈𝑛 + 𝑋∗ )(𝑉𝑛 + 𝑌∗ )]

𝑉𝑛+1 = 𝑉𝑛 + + ℎ + ℎ∗ [𝑐 𝑉𝑛 + 𝑌∗  − 𝑐 𝑉𝑛 + 𝑌∗  2 + 𝑏(𝑈𝑛 + 𝑥∗ )(𝑉𝑛 + 𝑌∗ )]
                   (3.2) 

Expanding model (3.2) as a Taylor series at  𝑈𝑛 , 𝑉𝑛   = (0,0) to the second order, it becomes the following 

model: 

 
𝑈𝑛+1 = 𝑎11𝑈𝑛 + 𝑎12𝑉𝑛 + 𝑎13𝑈𝑛𝑉𝑛 + 𝑎14𝑈𝑛

2 + 𝑏11ℎ
∗𝑈𝑛 + 𝑏12ℎ

∗𝑉𝑛 + 𝑏13ℎ
∗𝑈𝑛𝑉𝑛 + 𝑏14ℎ

∗𝑈𝑛
2

𝑉𝑛+1 = 𝑎21𝑈𝑛 + 𝑎22𝑉𝑛 + 𝑎23𝑈𝑛𝑉𝑛 + 𝑎24𝑉𝑛
2 + 𝑏21ℎ

∗𝑈𝑛 + 𝑏22ℎ
∗𝑉𝑛 + 𝑏23ℎ

∗𝑈𝑛𝑉𝑛 + 𝑏24ℎ
∗𝑉𝑛

2
                (3.3)  

Where 

𝑎11 = 1 + ℎ(𝑎 − 2𝑎𝑥∗ − 𝑏𝑦∗), 𝑎12 = −ℎ𝑏𝑥∗, 𝑎13 = −ℎ𝑏, 𝑎14 = −ℎ𝑎; 

𝑏11 =
𝑎11−1

ℎ
, 𝑏12 =

𝑎12

ℎ
, 𝑏13 =

𝑎13

ℎ
 , 𝑏14 =

𝑎14

ℎ
; 

𝑎21 = ℎ𝑏𝑦∗, 𝑎22 = 1 + ℎ(𝑐 − 2𝑐𝑦∗ + 𝑏𝑥∗), 𝑎23 = −𝑎13 , 𝑎24 = −ℎ𝑐; 

𝑏21 =
𝑎21

ℎ
, 𝑏22 =

𝑎22−1

ℎ
, 𝑏23 =

𝑎23

ℎ
, 𝑏24 =

𝑎24

ℎ
. 

Let a matrix T is defined as follow: 

𝑇 =  
𝑎12              𝑎12

−1 − 𝑎11       𝜆2 − 𝑎11

  

Then the matrix T is invertible. Using transformation 

 
𝑈𝑛

𝑉𝑛
 = 𝑇  

𝑃𝑛
𝑄𝑛

  

Then model (3.3) becomes of the following form: 

 
𝑃𝑛+1 = −𝑃𝑛 + 𝐹 𝑈𝑛 , 𝑉𝑛 , ℎ∗ + 𝑂((𝑈𝑛

2, 𝑉𝑛
2))

𝑄𝑛+1 = 𝜆2𝑄𝑛 + 𝐺(𝑈𝑛 , 𝑉𝑛 , ℎ∗) + 𝑂((𝑈𝑛
2, 𝑉𝑛

2))
                                                                  (3.4) 

Where 

𝐹 𝑈𝑛 , 𝑉𝑛 , ℎ∗ =
 𝑎13 𝜆2 − 𝑎11 − 𝑎12𝑎23 

𝑎12 𝜆2 + 1 
 𝑈𝑛𝑉𝑛 +

𝑎14 𝜆2 − 𝑎11 

𝑎12 𝜆2 + 1 
𝑈𝑛

2 −
𝑎24

 𝜆2 + 1 
𝑉𝑛

2

−
[𝑏11 𝜆2 − 𝑎11 − 𝑏21𝑎12 ]

𝑎12 𝜆2 + 1 
𝑈𝑛ℎ

∗ +
[𝑏12 𝜆2 − 𝑎11 − 𝑏22𝑎12 ]

𝑎12 𝜆2 + 1 
𝑉𝑛ℎ

∗

+
[𝑏13 𝜆2 − 𝑎11 − 𝑏23𝑎12 ]

𝑎12 𝜆2 + 1 
𝑈𝑛𝑉𝑛ℎ

∗ +
𝑏14 𝜆2 − 𝑎11 

𝑎12 𝜆2 + 1 
𝑈𝑛

2ℎ∗ −
𝑏24

 𝜆2 + 1 
𝑉𝑛

2ℎ∗ 

𝐺 𝑈𝑛 , 𝑉𝑛 , ℎ∗ =
[𝑎13 1 + 𝑎11 + 𝑎12𝑎23 ]

𝑎12 𝜆2 + 1 
𝑈𝑛𝑉𝑛 +

𝑎14 1 + 𝑎11 

𝑎12 𝜆2 + 1 
𝑈𝑛

2 +
𝑎24

 𝜆2 + 1 
𝑉𝑛

2

+
[𝑏11 1 + 𝑎11 + 𝑏21𝑎12 ]

𝑎12 𝜆2 + 1 
𝑈𝑛ℎ

∗ +
[𝑏12 1 + 𝑎11 + 𝑏22𝑎12 ]

𝑎12 𝜆2 + 1 
𝑉𝑛ℎ

∗

+
[𝑏13 1 + 𝑎11 + 𝑏23𝑎12 ]

𝑎12 𝜆2 + 1 
𝑈𝑛𝑉𝑛ℎ

∗ +
𝑏14 1 + 𝑎11 

𝑎12 𝜆2 + 1 
𝑈𝑛

2ℎ∗ +
𝑏24

 𝜆2 + 1 
𝑉𝑛

2ℎ∗ 
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Now, we determine the center manifold 𝑤𝑐(0,0) of model (3.4) at the fixed point (0,0) in small neighborhood 

of ℎ∗ = 0. By the center manifold theory we can obtain the approximate representation of the center manifold 

𝑤𝑐(0,0) as follow: 

𝑤𝑐 0,0 = { 𝑃𝑛 , 𝑄𝑛 : 𝑄𝑛 = 𝑎1ℎ
∗ + 𝑎2ℎ

∗2 + 𝑎3𝑃𝑛ℎ
∗ + 𝑎4𝑃𝑛

2 + 𝑂(( 𝑃𝑛  +  ℎ∗ 2))} 
Where  

𝑎1 = 𝑎2 = 0, 

𝑎3 =
 1+𝑎11 [𝑏12  1+𝑎11 +𝑏22𝑎12 ]

𝑎12 (𝜆2+1)2 −
𝑏11 1+𝑎11 +𝑏21𝑎12

(𝜆2+1)2 , 

𝑎4 =
 1+𝑎11 [𝑏14𝑎12 +𝑏24  1+𝑎11 −𝑏13  1+𝑎11 −𝑏23𝑎12 ]

1−𝜆2
2 . 

Furthermore, we have 

𝑃𝑛+1 = −𝑃𝑛 + 𝐹 𝑈𝑛 , 𝑉𝑛 , ℎ∗  

         = −𝑃𝑛 + 𝑐1𝑃𝑛
2 + 𝑐2𝑃𝑛ℎ

∗ + 𝑐3𝑃𝑛
2ℎ∗ + 𝑐4𝑃𝑛ℎ

∗2 + 𝑐5𝑃𝑛
3 + 𝑂(( 𝑃𝑛  +  ℎ∗ 3)) 

Where 

𝑐1 =
1

𝜆2 + 1
{𝑎12𝑎14 𝜆2 − 𝑎11 −  1 + 𝑎11  𝑎13 𝜆2 − 𝑎11 − 𝑎12𝑎23 − 𝑏24 𝜆2 − 𝑎11 

2} 

𝑐2 =
1

𝑎12 𝜆2 + 1 
{𝑎12 𝑏11 𝜆2 − 𝑎11 − 𝑏21𝑎12 − [𝑏12 𝜆2 − 𝑎11 − 𝑏22𝑎12 ] 1 + 𝑎11 } 

𝑐3 =
𝑎2

𝑎12 𝜆2 + 1 
 𝑎12 𝑎13 𝜆2 − 𝑎11 − 𝑎23𝑎12  𝜆2 − 2𝑎11 − 1 + 𝑎12

2𝑎14 1 + 𝑎11 

+ 2𝑎12𝑎24  1 + 𝑎11  𝜆2 + 1   +
𝑎1

𝑎12 𝜆2 + 1 
{𝑎12 𝑏11 𝜆2 − 𝑎11 − 𝑏21𝑎12 

+ 𝑎12
2𝑏14 𝜆2 + 1 −  𝑏12 𝜆2 − 𝑎11 − 𝑏22𝑎12  1 + 𝑎11 − 𝑎12𝑏24 1 + 𝑎11 

2} 

𝑐4 =
𝑎3

𝑎12 𝜆2 + 1 
 𝑎12 𝑎13 𝜆2 − 𝑎11 − 𝑎23𝑎12  𝜆2 − 2𝑎11 − 1 + 𝑎12

2𝑎14 1 + 𝑎11 

+ 2𝑎12𝑎24  1 + 𝑎11  𝜆2 + 1   

+
𝑎2

𝑎12 𝜆2 + 1 
 𝑎12 𝑏11 𝜆2 − 𝑎11 − 𝑏21𝑎12 −  𝑏12 𝜆2 − 𝑎11 − 𝑏22𝑎12  = 0 

𝑐5 =
𝑎4

𝑎12 𝜆2 + 1 
{ 𝑎13 𝜆2 − 𝑎11 − 𝑎23𝑎12  𝜆2 − 2𝑎11 − 1 + 𝑎12𝑎14 1 + 𝑎11 + 2𝑎24 [ 1 + 𝑎11  𝜆2 + 1 ]} 

There for, when model(3.4) is restricted to the center manifold 𝑤𝑐(0,0)  we obtain the map 𝐺∗ as follows: 

𝐺∗ 𝑃𝑛 = −𝑃𝑛 + 𝑐1𝑃𝑛
2 + 𝑐2𝑃𝑛ℎ

∗ + 𝑐3𝑃𝑛
2ℎ∗ + 𝑐4𝑃𝑛ℎ

∗2 + 𝑐5𝑃𝑛
3 + 𝑂(( 𝑃𝑛  +  ℎ∗ 3))           …(3.5) 

In order to undergo a flip bifurcation for a map, we require that two discriminatory quantities  ∝1  and 

∝2 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑧𝑒𝑟𝑜. 
Where  

∝1=  (𝐺∗
𝑃𝑛ℎ

∗ +
1

2
𝐺∗

ℎ∗𝐺
∗
𝑃𝑛𝑃𝑛 ) 

(0,0)
= 𝑐2 

∝2=  (
1

6
𝐺∗

𝑃𝑛𝑃𝑛𝑃𝑛
+ (

1

2
𝐺∗

ℎ∗𝐺
∗
𝑃𝑛𝑃𝑛

)2) 
(0,0)

= 𝑐1
2 + 𝑐5 

There for by the above analysis and the theorem in [11], we obtain the following result. 

Theorem 3.1: if 𝛼2 ≠ 0  then model (3.2)  undergo a flip bifurcation at the fixed point (𝑥∗, 𝑦∗)   when the 

parameter ℎ∗  varies in small neighborhood of the origin. Moreover, if 𝛼2 > 0(resp. 𝛼2 < 0), then the periodic 

point which bifurcation from (𝑥∗, 𝑦∗)  are stable (resp. unstable). 

 

IV. NUMERICAL SIMULATION 
 In this paper, we give the bifurcation diagram and phase portraits of model (1.3) to confirm the above 

theoretical analysis and show the new interesting complex dynamical behaviors by using numerical simulation. 

We will choose 𝑎 = 2.5, 𝑏 = 0.3, 𝑐 = 0.2, (𝑥0, 𝑦0)  =  (0.85, 0.55)  and ℎ ∈ [1, 1.5]  in model  (1.3)  as an 

example. 

 Due to above parameter values and the control parameter range we have got that   𝑥∗, 𝑦∗ =
 0.7457, 2.1186 , ℎ∗ = 3.2054, ∝1= −1.8403 and∝2= 2.7747. Obviously, we have(𝑎, 𝑏, 𝑐, ℎ∗, ∆) ∈ 𝑀1 . The 

figures (1) and(2) will show the correctness of theorem3.1. 

From figure(1), we will see that the fixed point  𝑥∗, 𝑦∗ =  0.7457, 2.1186  is stable for ℎ < 1.3782 and loses 

its stability with  ℎ = 1.3782 ; when ℎ > 1.3782 the periodic doubling and chaos will appear with increasing 

ofℎ. 

Due to bifurcation diagram (A) in figure (1), we see that the model (1.3) changes from stable to periodic 

doubling, period-4, -8, quasi-periodic then chaotic when ℎ = 1.03, 1.22, 1.37, 1.4, 1.448 and1.47, respectively. 
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The last but not at least, noted that if the control parameter ℎ = 1.22 then ∝2= 2.7747 > 0  which means the 

periodic double is stable due to the theorem (3.1) and this is good numerical example to confirm theoretical 

analysis part(see figure(3)). 

 

 
Figure𝟐: Phase portrait corresponding to figure 𝟐(𝑨) here 𝒉 = 𝟏. 𝟎𝟑, 𝟏. 𝟐𝟐, 𝟏. 𝟑𝟕, 𝟏. 𝟒, 𝟏. 𝟒𝟒𝟖  

and𝟏. 𝟒𝟕, respectively. 



Flip bifurcation and chaos control in discrete-time prey-predator model 

www.irjes.com                                                                49 | Page 

 
              Figure3: The phase portrait of stable periodic double when 𝒉 = 𝟏. 𝟐𝟐   

 

V. CONTROL CHAOS 
 In this section, the feedback control method [13-14] is used to stabilize chaotic orbits at an unstable 

positive fixed point of model(1.3). 

Consider the following controlled form of model(1.3) : 

 
𝑋𝑛+1 = 𝑋𝑛 + ℎ 𝑎𝑋𝑛 1 − 𝑋𝑛 − 𝑏𝑋𝑛𝑌𝑛  + 𝑆𝑛
𝑌𝑛+1 = 𝑌𝑛 + ℎ 𝑐𝑌𝑛 1 − 𝑌𝑛 + 𝑏𝑋𝑛𝑌𝑛               

                                                                                               (5.1) 

with the following feedback control law as the control force: 

  𝑆𝑛 = −𝑝1 𝑋𝑛 − 𝑋∗ −𝑝2(𝑌𝑛 − 𝑌∗)                                                                                                                (5.2) 

where 𝑝1,2 is the feedback gain and (𝑋∗, 𝑌∗) is a positive fixed point of model(1.3). 

The Jacobian matrix of model  5.1  at a fixed point  (𝑋∗, 𝑌∗) is  

                  𝐽((𝑋∗, 𝑌∗)) =  𝑎11−𝑝1              𝑎12−𝑝2
𝑎21                    𝑎22

                                                                      

where 𝑎11 , 𝑎12 , 𝑎21  and 𝑎22  are given in model (3.3). 

The corresponding characteristic equation of matrix 𝐽((𝑋∗, 𝑌∗)) is: 

𝜆2 −  𝑎11 + 𝑎22−𝑝1    𝜆 + 𝑎22 𝑎11−𝑝1   − 𝑎21(𝑎12−𝑝2  ) = 0                               (5.3) 

Let 𝜆1,2 are the eigenvalues of (5.3) , then  

 𝜆1 + 𝜆2 = 𝑎11 + 𝑎22−𝑝1                                                                                                                 (5.4)     

 and 

 𝜆1𝜆2 = 𝑎22 𝑎11−𝑝1   − 𝑎21 (𝑎12−𝑝2  )                                                                                               (5.5)     

The lines of marginal stability are determined by solving the equation𝜆1 = ±1 and𝜆1𝜆2 = 1. These conditions 

guarantee that the eigenvalues 𝜆1 and 𝜆2 have modulus less than 1. 

Suppose𝜆1𝜆2 = 1; from(5.5) we have line 𝑙1 as follows: 

  𝑎22𝑝1 − 𝑎21𝑝2 = 𝑎11𝑎22 − 1                                                                                 (5.6) 

Suppose𝜆1 = 1,−1; from(5.5) and (5.6) we have lines 𝑙2  and 𝑙3as follows:   

  (1 − 𝑎22)𝑝1 + 𝑎21𝑝2 = 𝑎11 + 𝑎22 − 1 − 𝑎11𝑎22 + 𝑎12𝑎21                                   (5.7) 

and  

 (1 + 𝑎22)𝑝1 − 𝑎21𝑝2 = 𝑎11 + 𝑎22 + 1 + 𝑎11𝑎22 − 𝑎12𝑎21                                    (5.8) 

The stable eigenvalues lie within a triangular region by line 𝑙1   𝑙2    and 𝑙3   .Therefore, some numerical 

simulations can be made to control the unstable fixed point (𝑋∗, 𝑌∗) by the state feedback method. 

 The parameters are selected as a = 0.79, 𝑏 = 0.3, 𝑐 = 0.2, ℎ = 4 , (𝑋, 𝑌) = (0.85, 0.55) and the feedback 

gain 𝑝1  = – 1.17502, 𝑝2  = 0.18334. A chaotic trajectory is stabilized at the fixed point (0.395161, 1.592742) 

(see Figure (4)).       
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Figure 4: The time responses for the state X, Y of the controlled model (5.1) in the (n, X), (n, Y) plane. 

 

VI. CONCLUSION 
 In this paper, the dynamical behavior of model (1.3)  is discussed. If𝑎 > 𝑏, then the unique positive 

fixed point (𝑥∗, 𝑦∗) arise beside the fixed points (0,0), (1,0) and(0,1). The model (1.3) exhibit complex and 

interesting dynamical behavior when the control parameter ℎ is varying. That is if (𝑎, 𝑏, 𝑐, ℎ) ∈ 𝑀1or 𝑀2 and 

taking ℎ as bifurcation parameter, then the flip bifurcation appears for the model(1.3). Moreover, the chaos 

control in model (1.3) is obtained. 
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