HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE REAL LINE

A. ABOUELAZ *, A. ACHAK *, R. DAHER *, N. SAFOUANE *

Abstract. In this paper we consider a generalized Bessel-Struve operator $l_{\alpha,n}$ on the real line, which generalizes the Bessel-Struve operator l_{α} , we define the generalized Bessel-Struve intertwining operator which turn out to be transmutation operator between $l_{\alpha,n}$ and the second derivative operator $\frac{d^2}{dx^2}$. We build the generalized Weyl integral transform and we establish an inversion theorem of the generalized Weyl integral transform. We exploit the generalized Bessel-Struve intertwining operator and the generalized Weyl integral transform, firstly to develop a new harmonic analysis on the real line corresponding to $l_{\alpha,n}$, and secondly to introduce and study the generalized Sonine integral transform $S^{n,m}_{\alpha,\beta}$. We prove that $S^{n,m}_{\alpha,\beta}$ is a transmutation operator from $l_{\alpha,n}$ to $l_{\beta,n}$. As a side result we prove Paley-Wiener theorem for the generalized Bessel-Struve transform associated with the generalized Bessel-Struve operator.

I. Introduction

In this paper we consider the generalized Bessel-Struve oprator $l_{\alpha,n}$, $\alpha > \frac{-1}{2}$, defined on R by

(1)
$$
l_{\alpha,n}u(x) = \frac{d^2u}{dx^2}(x) + \frac{2\alpha+1}{x}\frac{du}{dx}(x) - \frac{4n(\alpha+n)}{x^2}u(x) - \frac{(2\alpha+4n+1)}{x}D(u)(0)
$$

where $D = x^{2n} \frac{d}{dx} \circ x^{-2n}$ and $n = 0, 1, ...$. For $n = 0$, we regain the Bessel-Struve operator

(2)
$$
l_{\alpha}u(x) = \frac{d^2u}{dx^2}(x) + \frac{2\alpha+1}{x} \left[\frac{du}{dx}(x) - \frac{du}{dx}(0) \right].
$$

Through this paper, we provide a new harmonic analysis on the real line corresponding to the generalized Bessel-Struve operator $l_{\alpha,n}$.

The outline of the content of this paper is as follows.

Section 2 is dedicated to some properties and results concerning the Bessel-Struve transform.

achakachak@hotmail.fr.

.

²⁰¹⁰ Mathematics Subject Classifications: 42A38, 44A35, 34B30.

Key words and phrases: Bessel-Struve operator; transmutation operators; Harmonic Analysis; Generalized Bessel-Struve Sonine Integral Transform.

[∗]Department of Mathematics, Faculty of Sciences Aïn Chock, University of Hassan II, Casablanca 20100, Morocco.

In section 3, we construct a pair of transmutation operators $\mathcal{X}_{\alpha,n}$ and $W_{\alpha,n}$, afterwards we exploit these transmutation operators to build a new harmonic analysis on the real line corresponding to operator $l_{\alpha,n}$.

II. Preliminaries

Throughout this paper assume $\alpha > \beta > \frac{-1}{2}$. We denote by

• $E(\mathbb{R})$ the space of C^{∞} functions on \mathbb{R} , provided with the topology of compact convergence for all derivatives. That is the topology defined by the seminorms

$$
p_{a,m}(f) = \sup_{x \in [-a,a]} |f^{(k)}(x)|, \ a > 0, \ m \in \mathbb{N}, \ and \ 0 \le k \le m.
$$

- $D_a(\mathbb{R})$, the space of C^{∞} functions on \mathbb{R} , which are supported in $[-a, a]$, equipped with the topology induced by $E(\mathbb{R})$.
- $D(\mathbb{R}) = \bigcup_{a>0} D_a(\mathbb{R})$, endowed with inductive limit topology.
- $L^p_\alpha(\mathbb{R})$ the class of measurable functions f on \mathbb{R} for which $||f||_{p,\alpha} < \infty$, where

$$
||f||_{p,\alpha} = \left(\int_{\mathbb{R}} |f(x)|^p |x|^{2\alpha+1} dx\right)^{\frac{1}{p}}, \quad if p < \infty,
$$

and
$$
||f||_{\infty,\alpha} = ||f||_{\infty} = \operatorname{ess} \sup_{x \ge 0} |f(x)|.
$$

$$
\bullet \frac{d}{dx^2} = \frac{1}{2x} \frac{d}{dx}, \text{ where } \frac{d}{dx} \text{ is the first derivative operator.}
$$

In this section we recall some facts about harmonic analysis related to the Bessel-Struve operator l_{α} . We cite here, as briefly as possible, only some properties. For more details we refer to [2, 3].

For $\lambda \in \mathbb{C}$, the differential equation:

(3)
$$
\begin{cases} l_{\alpha}u(x) = \lambda^2 u(x) \\ u(0) = 1, u'(0) = \frac{\lambda \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma(\alpha+\frac{3}{2})} \end{cases}
$$

possesses a unique solution denoted $\Phi_{\alpha}(\lambda x)$. This eigenfunction, called the Bessel-Struve kernel, is given by:

$$
\Phi_{\alpha}(\lambda x) = j_{\alpha}(i\lambda x) - ih_{\alpha}(i\lambda x), \quad x \in \mathbb{R}.
$$

 j_α and h_α are respectively the normalized Bessel and Struve functions of index α .These kernels are given as follows

$$
j_{\alpha}(z) = \Gamma(\alpha + 1) \sum_{k=0}^{+\infty} \frac{(-1)^k \left(\frac{z}{2}\right)^{2k}}{k! \Gamma(k + \alpha + 1)}
$$

and

$$
h_{\alpha}(z) = \Gamma(\alpha + 1) \sum_{k=0}^{+\infty} \frac{(-1)^k \left(\frac{z}{2}\right)^{2k+1}}{\Gamma(k + \frac{3}{2}) \Gamma(k + \alpha + \frac{3}{2})}.
$$

The kernel Φ_{α} possesses the following integral representation:

(4)
$$
\Phi_{\alpha}(\lambda x) = \frac{2\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})} \int_0^1 (1-t^2)^{\alpha-\frac{1}{2}} e^{\lambda x t} dt, \quad \forall x \in \mathbb{R}, \quad \forall \lambda \in \mathbb{C}.
$$

The Bessel-Struve intertwining operator on R denoted \mathcal{X}_{α} introduced by L. Kamoun and M. Sifi in [3], is defined by:

(5)
$$
\mathcal{X}_{\alpha}(f)(x) = a_{\alpha} \int_0^1 (1-t^2)^{\alpha-1} f(xt) dt, f \in E(\mathbb{R}), x \in \mathbb{R},
$$

where

(6)
$$
a_{\alpha} = \frac{2\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})}.
$$

The Bessel-Struve kernel Φ_{α} is related to the exponential function by

(7)
$$
\forall x \in \mathbb{R}, \quad \forall \lambda \in \mathbb{C}, \quad \Phi_{\alpha}(\lambda x) = \mathcal{X}_{\alpha}(e^{\lambda \cdot})(x).
$$

 \mathcal{X}_{α} is a transmutation operator from l_{α} into $\frac{d^2}{dx^2}$ and verifies

(8)
$$
l_{\alpha} \circ \mathcal{X}_{\alpha} = \mathcal{X}_{\alpha} \circ \frac{d^2}{dx^2}.
$$

Theorem 1. The operator \mathcal{X}_{α} , $\alpha > \frac{-1}{2}$ is topological isomorphism from $E(\mathbb{R})$ onto itself. The inverse operator $\mathcal{X}_{\alpha}^{-1}$ is given for all $f \in E(\mathbb{R})$ by

(i) if $\alpha = r + k$, $k \in \mathbb{N}$, $\frac{-1}{2} < r < \frac{1}{2}$

$$
(9) \quad \mathcal{X}_{\alpha}^{-1}(f)(x) = \frac{2\sqrt{\pi}}{\Gamma(\alpha+1)\Gamma(\frac{1}{2}-r)}x(\frac{d}{dx^2})^{k+1}\left[\int_0^x (x^2-t^2)^{-r-\frac{1}{2}}f(t)|t|^{2\alpha+1}dt\right].
$$

(ii) if $\alpha = \frac{1}{2} + k, k \in \mathbb{N}$

(10)
$$
\mathcal{X}_{\alpha}^{-1}(f)(x) = \frac{2^{2k+1}k!}{(2k+1)!}x(\frac{d}{dx^2})^{k+1}(x^{2k+1}f(x)), \ x \in \mathbb{R}.
$$

Definition 1. The Bessel-Struve transform is defined on $L^1_\alpha(\mathbb{R})$ by

(11)
$$
\forall \lambda \in \mathbb{R}, \quad \mathcal{F}_{B,S}^{\alpha}(f)(\lambda) = \int_{\mathbb{R}} f(x) \Phi_{\alpha}(-i\lambda x) |x|^{2\alpha+1} dx.
$$

Proposition 1. If $f \in L^1_\alpha(\mathbb{R})$ then $\|\mathcal{F}_{B,S}^{\alpha}(f)\|_{\infty} \leq \|f\|_{1,\alpha}$.

Theorem 2. (Paley-Wiener) Let $a > 0$ and f a function in $\mathcal{D}_a(\mathbb{R})$ then $\mathcal{F}_{B,S}^{\alpha}$ can be extended to an analytic function on $\mathbb C$ that we denote again $\mathcal{F}_{B,S}^{\alpha}(f)$ verifying

$$
\forall k \in \mathbb{N}^*, \quad |\mathcal{F}_{B,S}^{\alpha}(f)(z)| \le Ce^{a|z|}.
$$

Definition 2. For $f \in L^1_\alpha(\mathbb{R})$ with bounded support, the integral transform W_α , given by

(12)
$$
W_{\alpha}(f)(x) = \frac{2\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})} \int_{|x|}^{+\infty} (y^2 - x^2)^{\alpha-\frac{1}{2}} y f(sgn(x)y) dy, \quad x \in \mathbb{R} \setminus \{0\}
$$

is called Weyl integral transform associated with Bessel-Struve operator.

Proposition 2. (i) W_{α} is a bounded operator from $L_{\alpha}^{1}(\mathbb{R})$ to $L^{1}(\mathbb{R})$, where $L^1(\mathbb{R})$ is the space of lebesgue-integrable functions.

(ii) Let f be a function in $E(\mathbb{R})$ and g a function in $L_{\alpha}(\mathbb{R})$ with bounded support, the operators \mathcal{X}_{α} and W_{α} are related by the following relation

(13)
$$
\int_{\mathbb{R}} \mathcal{X}_{\alpha}(f)(x)g(x)|x|^{2\alpha+1} dx = \int_{\mathbb{R}} f(x)W_{\alpha}(g)(x)dx.
$$

(iii) $\forall f \in L^1_\alpha(\mathbb{R}), \ \mathcal{F}^\alpha_{B,S} = \mathcal{F} \circ W_\alpha(f)$ where \mathcal{F} is the classical Fourier transform defined on $L^1(\mathbb{R})$ by

$$
\mathcal{F}(g)(\lambda) = \int_{\mathbb{R}} g(x)e^{-i\lambda x} dx.
$$

We designate by K_0 the space of functions f infinitely differentiable on \mathbb{R}^* with bounded support verifying for all $n \in \mathbb{N}$,

$$
\lim_{y \to 0^{-}} y^{n} f^{(n)}(y) \quad and \quad \lim_{y \to 0^{+}} y^{n} f^{(n)}(y)
$$

exist.

Definition 3. We define the operator V_α on K_0 as follows

• If $\alpha = k + \frac{1}{2}$ $\frac{1}{2}, k \in \mathbb{N}$ $V_{\alpha}(f)(x) = (-1)^{k+1} \frac{2^{2k+1}k!}{(2k+1)!}$ $\frac{2}{(2k+1)!}$ d $\frac{d}{dx^2}$)^{k+1}($f(x)$), $x \in \mathbb{R}^*$. • If $\alpha = k + r$, $k \in \mathbb{N}$, $\frac{-1}{2} < r < \frac{1}{2}$ and $f \in K_0$

$$
V_{\alpha}(f)(x) = \frac{(-1)^{k+1}2\sqrt{\pi}}{\Gamma(\alpha+1)\Gamma(\frac{1}{2}-r)} \left[\int_{|x|}^{\infty} (y^2 - x^2)^{-r-\frac{1}{2}} \left(\frac{d}{dy^2}\right)^{k+1} f(sgn(x)y) y dy \right], \ x \in \mathbb{R}^*.
$$

Proposition 3. Let $f \in K_0$ and $q \in E(\mathbb{R})$,

• the operators V_{α} and $\mathcal{X}_{\alpha}^{-1}$ are related by the following relation

(14)
$$
\int_{\mathbb{R}} V_{\alpha}(f)(x)g(x)|x|^{2\alpha+1}dx = \int_{\mathbb{R}} f(x)\mathcal{X}_{\alpha}^{-1}(g)(x)dx.
$$

• V_{α} and W_{α} are related by the following relation

(15)
$$
V_{\alpha}(W_{\alpha}(f)) = W_{\alpha}(V_{\alpha}(f)) = f.
$$

Definition 4. Let f be a continuous function on \mathbb{R} . We define the Sonine integral transform as in [4] by, for all $x \in \mathbb{R}$

(16)
$$
S_{\alpha,\beta}(f)(x) = c(\alpha,\beta) \int_0^1 (1-r^2)^{\alpha-\beta-1} f(rx) r^{2\beta+1} dr,
$$

where

(17)
$$
c(\alpha, \beta) = \frac{2\Gamma(\alpha + 1)}{\Gamma(\beta + 1)\Gamma(\alpha - \beta)}.
$$

Proposition 4. (i) The classical Sonine integral formula may be formulated as follows

(18)
$$
\Phi_{\alpha}(\lambda x) = c(\alpha, \beta) \int_0^1 (1 - t^2)^{\alpha - \beta - 1} \Phi_{\beta}(\lambda tx) t^{2\beta + 1} dt.
$$

(ii) The Sonine integral transform verifies

(19)
$$
S_{\alpha,\beta}(\Phi_{\beta}(\lambda.))(x) = \Phi_{\alpha}(\lambda x), \quad x \in \mathbb{R}.
$$

(iii) For f a function of class C^2 on \mathbb{R} , $S_{\alpha,\beta}(f)$ is a function of class C^2 on \mathbb{R} and

(20)
$$
\forall x \in \mathbb{R}, \ l_{\alpha}(S_{\alpha,\beta}(f))(x) = S_{\alpha,\beta}(l_{\beta}(f))(x).
$$

(iv) The Sonine integral transform is a topological isomorphism from $E(\mathbb{R})$ onto itself. Furthermore, it verifies

(21)
$$
S_{\alpha,\beta} = \mathcal{X}_{\alpha} \circ \mathcal{X}_{\beta}^{-1}.
$$

(v) The inverse operator is

(22)
$$
S_{\alpha,\beta}^{-1} = \mathcal{X}_{\beta} \circ \mathcal{X}_{\alpha}^{-1}.
$$

Definition 5. For f continuous function on \mathbb{R} , with compact support, we define the Dual Sonine transform denoted ${}^tS_{\alpha,\beta}$ by

$$
{}^{t}S_{\alpha,\beta}(f)(x) = c(\alpha,\beta) \int_{|x|}^{\infty} (y^2 - x^2)^{\alpha-\beta-1} y f(sgn(x)y) dy, \quad x \in \mathbb{R}^*.
$$

Theorem 3. The dual Sonine transform verifies the following relations for all $f \in D(\mathbb{R})$ and $g \in E(\mathbb{R})$, we have

(i)

$$
\int_{\mathbb{R}} S_{\alpha,\beta}(g)(x)f(x)|x|^{2\alpha+1}dx = \int_{\mathbb{R}} t S_{\alpha,\beta}(f)(x)g(x)|x|^{2\beta+1}dx.
$$

(ii)

$$
{}^{t}S_{\alpha,\beta}(f) = V_{\beta}(W_{\alpha}(f)).
$$

(iii)

$$
\mathcal{F}_{B,S}^{\beta}(f) = \mathcal{F}_{B,S}^{\alpha} \circ ^{t} S_{\alpha,\beta}(f).
$$

III. HARMONIC ANALYSIS ASSOCIATED WITH $l_{\alpha,n}$

Throughout this section assume $\alpha > \beta > \frac{-1}{2}$ and $n = 0, 1, 2, \dots$. We denoted by

- \mathcal{M}_n the map defined by $\mathcal{M}_n f(x) = x^{2n} f(x)$.
- $E_n(\mathbb{R})$ (resp $D_n(\mathbb{R})$) stand for the subspace of $E(\mathbb{R})$ (resp. $D(\mathbb{R})$) consisting of functions f such that

$$
f(0) = \dots = f^{(2n-1)}(0) = 0.
$$

• $D_{a,n}(\mathbb{R}) = D_a(\mathbb{R}) \cap E_n(\mathbb{R})$ where $a > 0$.

• $L^p_{\alpha,n}(\mathbb{R})$ the class of measurable functions f on \mathbb{R} for which

$$
||f||_{p,\alpha,n} = ||\mathcal{M}_n^{-1}f||_{p,\alpha+2n} < \infty.
$$

i. Transmutation operators.

For $\lambda \in \mathbb{C}$ and $x \in \mathbb{R}$, put

(23)
$$
\Psi_{\lambda,\alpha,n}(x) = x^{2n} \Phi_{\alpha+2n}(\lambda x)
$$

where $\Phi_{\alpha+2n}$ is the Bessel-Struve kernel of index $\alpha + 2n$.

Lemma 1. (i) The map \mathcal{M}_n is a topological isomorphism

- from $E(\mathbb{R})$ onto $E_n(\mathbb{R})$.
- from $D(\mathbb{R})$ onto $D_n(\mathbb{R})$.

(ii) For all $f \in E(\mathbb{R})$

(24)
$$
l_{\alpha,n} \circ \mathcal{M}_n(f) = \mathcal{M}_n \circ l_{\alpha+2n}(f).
$$

Proof. Assertion (i) is easily checked (see [1]). By (1) and (2) we have for any $f \in E(\mathbb{R})$,

$$
l_{\alpha,n}(x^{2n}f)(x) = (x^{2n}f)'' + \frac{2\alpha+1}{x}(x^{2n}f)' - \frac{4n(\alpha+n)}{x^2}(x^{2n}f(x)) - (2\alpha+4n+1)x^{2n-1}f'(0)
$$

= $x^{2n}\left(f''(x) - \frac{2\alpha+4n+1}{x}(f'(x)-f'(0))\right)$
= $x^{2n}l_{\alpha+2n}f(x).$

which proves Assertion (ii). \blacksquare

Proposition 5. (i) $\Psi_{\lambda,\alpha,n}$ satisfies the differential equation

$$
l_{\alpha,n}\Psi_{\lambda,\alpha,n}=\lambda^2\Psi_{\lambda,\alpha,n}.
$$

(ii) $\Psi_{\lambda,\alpha,n}$ possesses the following integral representation:

$$
\Psi_{\lambda,\alpha,n}(x) = \frac{2\Gamma(\alpha+2n+1)}{\sqrt{\pi}\Gamma(\alpha+2n+\frac{1}{2})}x^{2n}\int_0^1 (1-t^2)^{\alpha+2n-\frac{1}{2}}e^{\lambda x t}dt, \quad \forall x \in \mathbb{R}, \quad \forall \lambda \in \mathbb{C}.
$$

Proof.

By (23)

$$
\Psi_{\lambda,\alpha,n} = \mathcal{M}_n(\Phi_{\alpha+2n}(\lambda x)),
$$

using (3) and (24) we obtain

$$
l_{\alpha,n}(\Psi_{\lambda,\alpha,n}) = l_{\alpha,n} \circ \mathcal{M}_n(\Phi_{\alpha+2n}(\lambda.))
$$

= $\mathcal{M}_n \circ l_{\alpha+2n}(\Phi_{\alpha+2n}(\lambda.))$
= $\lambda^2 \Psi_{\lambda,\alpha,n}$,

which proves (i). Statement (ii) follows from (4) and (23). \blacksquare

Definition 6. For $f \in E(\mathbb{R})$, we define the generalized Bessel-Struve intertwining operator $\mathcal{X}_{\alpha,n}$ by

$$
\mathcal{X}_{\alpha,n}(f)(x) = a_{\alpha+2n} x^{2n} \int_0^1 (1-t^2)^{\alpha+2n-1} f(xt) dt, f \in E(\mathbb{R}), \ x \in \mathbb{R}
$$

where $a_{\alpha+2n}$ is given by (6).

Remark 1. • For $n = 0$, $\mathcal{X}_{\alpha,n}$ reduces to the Bessel-Struve intertwining operator.

• It is easily checked that

(25)
$$
\mathcal{X}_{\alpha,n} = \mathcal{M}_n \circ \mathcal{X}_{\alpha+2n}.
$$

• Due to (7) , (23) and (25) we have

$$
\Psi_{\lambda,\alpha,n}(x) = \mathcal{X}_{\alpha,n}(e^{\lambda \cdot})(x).
$$

Proposition 6. $\mathcal{X}_{\alpha,n}$ is a transmutation operator from $l_{\alpha,n}$ into $\frac{d^2}{dx^2}$ and verifies

$$
l_{\alpha,n} \circ \mathcal{X}_{\alpha,n} = \mathcal{X}_{\alpha,n} \circ \frac{d^2}{dx^2}.
$$

Proof. It follows from (8), (25) and lemma 1 (ii) that

$$
l_{\alpha,n} \circ \mathcal{X}_{\alpha,n} = l_{\alpha,n} \circ \mathcal{M}_n \mathcal{X}_{\alpha+2n}
$$

= $\mathcal{M}_n \circ l_{\alpha+2n} \mathcal{X}_{\alpha+2n}$
= $\mathcal{M}_n \mathcal{X}_{\alpha+2n} \circ \frac{d^2}{dx^2}$
= $\mathcal{X}_{\alpha,n} \circ \frac{d^2}{dx^2}$.

Theorem 4. The operator $\mathcal{X}_{\alpha,n}$ is an isomorphism from $E(\mathbb{R})$ onto $E_n(\mathbb{R})$. The inverse operator $\mathcal{X}_{\alpha,n}^{-1}$ is given for all $f \in E_n(\mathbb{R})$ by

(i) if
$$
\alpha = r + k
$$
, $k \in \mathbb{N}$, $\frac{-1}{2} < r < \frac{1}{2}$
\n
$$
\mathcal{X}_{\alpha,n}^{-1} f(x) = \frac{2\sqrt{\pi}}{\Gamma(\alpha+2n+1)\Gamma(\frac{1}{2}-r)} x(\frac{d}{dx^2})^{k+2n+1} \left[\int_0^x (x^2 - t^2)^{-r-\frac{1}{2}} f(t) |t|^{2\alpha+2n+1} dt \right].
$$
\n(ii) if $\alpha = \frac{1}{2} + k$, $k \in \mathbb{N}$
\n
$$
\mathcal{X}_{\alpha,n}^{-1} f(x) = \frac{2^{2k+4n+1}(k+2n)!}{(2k+4n+1)!} x(\frac{d}{dx^2})^{k+2n+1}(x^{2k+2n+1}f(x)), \ x \in \mathbb{R}.
$$

Proof. A combination of (25), Lemma 1 and Theorem 1 shows that $\mathcal{X}_{\alpha,n}$ is an isomorphism from $E(\mathbb{R})$ onto $E_n(\mathbb{R})$. Let $\mathcal{X}_{\alpha,n}^{-1}$ the inverse operator of $\mathcal{X}_{\alpha,n}$, we have

$$
\mathcal{X}_{\alpha,n}^{-1}(f) = (\mathcal{X}_{\alpha,n}(f))^{-1}.
$$

Using (25) we can deduce that

$$
\mathcal{X}_{\alpha,n}^{-1}(f) = (\mathcal{M}_n \mathcal{X}_{\alpha+2n}(f))^{-1}
$$

(26)
$$
\mathcal{X}_{\alpha,n}^{-1}(f) = \mathcal{X}_{\alpha+2n}^{-1} \mathcal{M}_n^{-1}(f).
$$

By (9) and (10) we obtain the desired result.

ii. The generalized Weyl integral transform.

Definition 7. For $f \in L^1_{\alpha,n}(\mathbb{R})$ with bounded support, the integral transform $W_{\alpha,n}$, given by

$$
W_{\alpha,n}(f(x)) = a_{\alpha+2n} \int_{|x|}^{+\infty} (y^2 - x^2)^{\alpha+2n-\frac{1}{2}} y^{1-2n} f(sgn(x)y) dy, \quad x \in \mathbb{R} \setminus \{0\}
$$

is called the generalized Weyl integral transform associated with Bessel-Struve operator.

Remark 2. • By a change of variable, $W_{\alpha,n}f$ can be written

$$
W_{\alpha,n}f(x) = a_{\alpha+2n} |x|^{2\alpha+2n+1} \int_1^{+\infty} (t^2 - 1)^{\alpha+2n-\frac{1}{2}} t^{1-2n} f(tx) dt, \quad x \in \mathbb{R} \setminus \{0\}.
$$

• It is easily checked that

(27)
$$
W_{\alpha,n} = W_{\alpha+2n} \circ \mathcal{M}_n^{-1}.
$$

Proposition 7. $W_{\alpha,n}$ is a bounded operator from $L^1_{\alpha,n}(\mathbb{R})$ to $L^1(\mathbb{R})$, where $L^1(\mathbb{R})$ is the space of lebesgue-integrable.

Proof. Let $f \in L^1_{\alpha,n}(\mathbb{R})$, by Proposition 2 (i) we can find a positif constant C such that

$$
||W_{\alpha+2n}(\mathcal{M}_n^{-1}f)||_1 \leq C||\mathcal{M}_n^{-1}f||_{1,\alpha+2n}
$$

$$
||W_{\alpha,n}(f)||_1 \leq C||f||_{1,\alpha,n}.
$$

By (27) we obtain the desired result. \blacksquare

Proposition 8. Let f be a function in $E(\mathbb{R})$ and g a function in $L^1_{\alpha,n}(\mathbb{R})$ with bounded support, the operators $\mathcal{X}_{\alpha,n}$ and $W_{\alpha,n}$ are related by the following relation

$$
\int_{\mathbb{R}} \mathcal{X}_{\alpha,n}(f)(x)g(x)|x|^{2\alpha+1}dx = \int_{\mathbb{R}} f(x)W_{\alpha,n}(g)(x)dx.
$$

Proof. Using (25), (27) and Proposition 2 (ii) we obtain

$$
\int_{\mathbb{R}} \mathcal{X}_{\alpha,n}(f(x))g(x)|x|^{2\alpha+1}dx = \int_{\mathbb{R}} \mathcal{M}_n \mathcal{X}_{\alpha+2n}(f)(x)g(x)|x|^{2\alpha+1}dx
$$

$$
= \int_{\mathbb{R}} x^{2n} \mathcal{X}_{\alpha+2n}(f)(x)g(x)|x|^{2\alpha+1}dx
$$

$$
= \int_{\mathbb{R}} \mathcal{X}_{\alpha+2n}f(x)\frac{g(x)}{x^{2n}}|x|^{2\alpha+4n+1}dx
$$

$$
= \int_{\mathbb{R}} f(x)W_{\alpha+2n}(\frac{g(x)}{x^{2n}})dx
$$

$$
= \int_{\mathbb{R}} f(x)W_{\alpha,n}(g)(x)dx.
$$

 \blacksquare

 \blacksquare

Definition 8. We define the operator $V_{\alpha,n}$ on K_0 as follows

• If
$$
\alpha = k + \frac{1}{2}
$$
, $k \in \mathbb{N}$ and $f \in K_0$
\n
$$
V_{\alpha,n}f(x) = (-1)^{k+1} \frac{2^{2k+4n+1}(k+2n)!}{(2k+4n+1)!} x^{2n} \left(\frac{d}{dx^2}\right)^{k+2n+1}(f(x)), \quad x \in \mathbb{R}^*.
$$
\n• If $\alpha = k + r$, $k \in \mathbb{N}$, $\frac{-1}{2} < r < \frac{1}{2}$
\n
$$
V_{\alpha,n}f(x) = \frac{(-1)^{k+1}2\sqrt{\pi}}{\Gamma(\alpha+2n+1)\Gamma(\frac{1}{2}-r)} x^{2n} \left[\int_{|x|}^{\infty} (y^2 - x^2)^{-r-\frac{1}{2}} \left(\frac{d}{dy^2}\right)^{k+2n+1} f(sgn(x)y) y dy \right], \quad x \in \mathbb{R}^*.
$$

Remark 3. It is easily checked that

(28)
$$
V_{\alpha,n} = \mathcal{M}_n \circ V_{\alpha+2n}.
$$

Proposition 9. Let $f \in K_0$ and $g \in E_n(\mathbb{R})$, the operators $V_{\alpha,n}$ and $\mathcal{X}_{\alpha,n}^{-1}$ are related by the following relation

$$
\int_{\mathbb{R}} V_{\alpha,n}f(x)g(x)|x|^{2\alpha+1}dx = \int_{\mathbb{R}} f(x)\mathcal{X}_{\alpha,n}^{-1}g(x)dx.
$$

Proof. A combination of (14), (26) and (28) shows that

$$
\int_{\mathbb{R}} V_{\alpha,n}(f(x))g(x)|x|^{2\alpha+1}dx = \int_{\mathbb{R}} \mathcal{M}_n V_{\alpha+2n}(f(x))g(x)|x|^{2\alpha+1}dx
$$

$$
= \int_{\mathbb{R}} x^{2n}V_{\alpha+2n}f(x)g(x)|x|^{2\alpha+1}dx
$$

$$
= \int_{\mathbb{R}} V_{\alpha+2n}f(x)\frac{g(x)}{x^{2n}}|x|^{2\alpha+4n+1}dx
$$

$$
= \int_{\mathbb{R}} f(x)\mathcal{X}_{\alpha+2n}^{-1}(\frac{g(x)}{x^{2n}})dx
$$

$$
= \int_{\mathbb{R}} f(x)\mathcal{X}_{\alpha,n}^{-1}(g(x))dx.
$$

Theorem 5. Let $f \in K_0$, $V_{\alpha,n}$ and $W_{\alpha,n}$ are related by the following relation

$$
V_{\alpha,n}(W_{\alpha,n}(f)) = W_{\alpha,n}(V_{\alpha,n}(f)) = f.
$$

Proof. The result follows directly from Proposition 3.(15), (27) and (28). \blacksquare

iii. The generalized Sonine integral transform.

Definition 9. Let $f \in E_m(\mathbb{R})$. We define the generalized Sonine integral transform by, for all $x \in \mathbb{R}$ (29)

$$
S_{\alpha,\beta}^{n,m}(f)(x) = c(\alpha + 2n, \beta + 2m)x^{2(n-m)} \int_0^1 (1 - r^2)^{\alpha - \beta + 2(n-m)-1} f(rx) r^{2\beta + 2m+1} dr,
$$

where $\alpha > \beta > \frac{-1}{2}$ and m, n two non-negative integers such that $n \geq m$. For $n = m = 0$, $S_{\alpha,\beta}^{n,m}$ reduces to the classical Sonine integral transform $S_{\alpha,\beta}$.

Remark 4. Due to (16) and (29)

٠

(30)
$$
S_{\alpha,\beta}^{n,m} = \mathcal{M}_n \circ S_{\alpha+2n,\beta+2n} \circ \mathcal{M}_m^{-1}.
$$

In the next Proposition, we establish an analogue of Sonine formula

Proposition 10. We have the following relation (31)

$$
\Psi_{\lambda,\alpha,n}(x) = c(\alpha+2n,\beta+2m)x^{2(n-m)} \int_0^1 (1-t^2)^{\alpha-\beta+2(n-m)-1} \Psi_{\lambda,\beta,m}(tx)t^{2\beta+2m+1} dt.
$$

Proof. A combination of (18) and (23) leads to the desired result. \blacksquare

Remark 5. The following relation yields from relation (31)

$$
S^{n,m}_{\alpha,\beta}(\Psi_{\lambda,\beta,m}(.))(x)=\Psi_{\lambda,\alpha,n}(x).
$$

Theorem 6. The generalized Sonine integral transform $S_{\alpha,\beta}^{n,m}(f)$ is an isomorphism from $E_m(\mathbb{R})$ onto $E_n(\mathbb{R})$ satisfying the intertwining relation

$$
l_{\alpha,n}(S^{n,m}_{\alpha,\beta}(f))(x) = S^{n,m}_{\alpha,\beta}(l_{\beta,m}(f))(x).
$$

Proof. An easily combination of (20), (24), (30), Lemma 1.(i) and Proposition 4 (iv) yields $S^{n,m}_{\alpha,\beta}(f)$ is an isomorphism from $E_m(\mathbb{R})$ onto $E_n(\mathbb{R})$ and

$$
l_{\alpha,n}(S_{\alpha,\beta}^{n,m}(f))(x) = l_{\alpha,n}\mathcal{M}_n \circ S_{\alpha+2n,\beta+2m} \circ \mathcal{M}_m^{-1}(f)(x)
$$

\n
$$
= \mathcal{M}_n l_{\alpha+2n}(S_{\alpha+2n,\beta+2m}) \circ \mathcal{M}_m^{-1}(f)(x)
$$

\n
$$
= \mathcal{M}_n S_{\alpha+2n,\beta+2m} l_{\beta+2m} \circ \mathcal{M}_m^{-1}(f)(x)
$$

\n
$$
= \mathcal{M}_n S_{\alpha+2n,\beta+2m} \circ \mathcal{M}_m^{-1} l_{\beta,m}(f)(x)
$$

\n
$$
= S_{\alpha,\beta}^{n,m}(l_{\beta,m}(f))(x).
$$

Theorem 7. The generalized Sonine transform is a topological isomorphism from $E_m(\mathbb{R})$ onto $E_n(\mathbb{R})$. Furthermore, it verifies

$$
S^{n,m}_{\alpha,\beta} = \mathcal{X}_{\alpha,n} \circ \mathcal{X}_{\beta,m}^{-1}
$$

the inverse operator is

$$
(S^{n,m}_{\alpha,\beta})^{-1}=\mathcal{X}_{\beta,m}\circ\mathcal{X}^{-1}_{\alpha,n}.
$$

Proof. It follows from (25) , (30) , Lemma 1.(i) and Proposition 4 $((iv)-(v))$ that $S^{n,m}_{\alpha,\beta}$ is a topological isomorphism from $E_m(\mathbb{R})$ onto $E_n(\mathbb{R})$ and

$$
S^{n,m}_{\alpha,\beta}(f) = \mathcal{M}_n \circ S_{\alpha+2n,\beta+2m} \circ \mathcal{M}_m^{-1}(f)
$$

= $\mathcal{M}_n \mathcal{X}_{\alpha+2n} \circ \mathcal{X}_{\beta+2m}^{-1} \mathcal{M}_m^{-1}(f)$
= $\mathcal{X}_{\alpha,n} \circ \mathcal{X}_{\beta,m}^{-1}(f).$

For the inverse operator it is easily checked that

$$
(S^{n,m}_{\alpha,\beta})^{-1}=\mathcal{X}_{\beta,m}\circ\mathcal{X}^{-1}_{\alpha,n}.
$$

 \blacksquare

Definition 10. For $f \in D_n(\mathbb{R})$ we define the dual generalized Sonine transform denoted ${}^tS_{\alpha,\beta}$ by

(32)

$$
{}^{t}S_{\alpha,\beta}^{n,m}(f)(x) = c(\alpha+2n,\beta+2m)x^{2m} \int_{|x|}^{\infty} (y^2 - x^2)^{\alpha-\beta+2(n-m)-1} y^{1-2n} f(sgn(x)y) dy,
$$

where $x \in \mathbb{R}^*$.

Remark 6. Due to (32) and Definition 5 we have

(33)
$$
{}^{t}S_{\alpha,\beta}^{n,m} = \mathcal{M}_m {}^{t}S_{\alpha+2n,\beta+2m}\mathcal{M}_n^{-1}.
$$

Proposition 11. The dual generalized Sonine transform verifies the following relation for all $f \in D_n(\mathbb{R})$ and $g \in E_m(\mathbb{R})$,

$$
\int_{\mathbb{R}} S_{\alpha,\beta}^{n,m} g(x) f(x) |x|^{2\alpha+1} dx = \int_{\mathbb{R}} t S_{\alpha,\beta}^{n,m}(f)(x) g(x) |x|^{2\beta+1} dx.
$$

Proof. A combination of (30), (33) and Theorem 3.(i) we get

$$
\int_{\mathbb{R}} S_{\alpha,\beta}^{n,m}(g)(x)f(x)|x|^{2\alpha+1}dx = \int_{\mathbb{R}} \mathcal{M}_n \circ S_{\alpha+2n,\beta+2m} \circ \mathcal{M}_m^{-1}(g)(x)f(x)|x|^{2\alpha+1}dx \n= \int_{\mathbb{R}} S_{\alpha+2n,\beta+2m} \circ \mathcal{M}_m^{-1}(g(x))\mathcal{M}_n^{-1}(f)(x)|x|^{2(\alpha+2n)+1}dx \n= \int_{\mathbb{R}} \mathcal{M}_m^{-1}(g(x))^t S_{\alpha+2n,\beta+2m} \circ \mathcal{M}_n^{-1}f(x)|x|^{2(\beta+2m)+1}dx \n= \int_{\mathbb{R}} \mathcal{M}_m(g(x))^t S_{\alpha+2n,\beta+2m} \circ \mathcal{M}_n^{-1}(f)(x)|x|^{2\beta+1}dx \n= \int_{\mathbb{R}} g(x)^t S_{\alpha,\beta}^{n,m}(f)(x)|x|^{2\beta+1}dx.
$$

Theorem 8. For all $f \in D_n(\mathbb{R})$, we have

$$
{}^{t}S_{\alpha,\beta}^{n,m}(f) = V_{\beta,m}(W_{\alpha,n}(f)).
$$

Proof. By (27) , (28) , (33) and Theorem 3 (ii), we get

$$
{}^{t}S_{\alpha,\beta}^{n,m}(f) = \mathcal{M}_m {}^{t}S_{\alpha+2n,\beta+2m}\mathcal{M}_n^{-1}(f)
$$

= $\mathcal{M}_m V_{\beta+2m}(W_{\alpha+2n}\mathcal{M}_n^{-1})(f)$
= $V_{\beta,m}(W_{\alpha,n}(f)).$

iv. Generalized Bessel-Struve transform.

Definition 11. The Generalized Bessel-Struve transform is defined on $L^1_{\alpha,n}(\mathbb{R})$ by

$$
\forall \lambda \in \mathbb{R}, \quad \mathcal{F}_{B,S}^{\alpha,n}(f)(\lambda) = \int_{\mathbb{R}} f(x) \Psi_{-i\lambda,\alpha,n}(x) |x|^{2\alpha+1} dx.
$$

Remark 7. • It follows from (11) , (23) and Definition 11 that $\mathcal{F}_{B,S}^{\alpha,n} = \mathcal{F}_{B,S}^{\alpha+2n} \circ \mathcal{M}_n^{-1}$, where $\mathcal{F}_{B,S}^{\alpha+2n}$ is the Bessel-Struve transform of order $\alpha + 2n$ given by (11).

Proposition 12. If $f \in L^1_{\alpha,n}(\mathbb{R})$ then

(i) $\|\mathcal{F}_{B,S}^{\alpha,n}(f)\|_{\infty} \leq \|f\|_{1,\alpha,n}.$ (ii) $\mathcal{F}_{B,S}^{\alpha,n} = \mathcal{F} \circ W_{\alpha,n}$.

Proof. (i) By Remark 7 and Proposition 1, we have for all $f \in L^1_{\alpha,n}(\mathbb{R})$

$$
\begin{aligned}\n\|\mathcal{F}_{B,S}^{\alpha,n}(f)\|_{\infty} &= \|\mathcal{F}_{B,S}^{\alpha+2n}(\mathcal{M}_n^{-1}f)\|_{\infty} \\
&\leq \|\mathcal{M}_n^{-1}f\|_{1,\alpha+2n} \\
&= \|f\|_{1,\alpha,n}.\n\end{aligned}
$$

(ii) From (27), Remark 7 and Proposition 2.(iii), we have for all $f \in L^1_{\alpha,n}(\mathbb{R})$

$$
\mathcal{F}_{B,S}^{\alpha,n}(f) = \mathcal{F}_{B,S}^{\alpha+2n} \circ \mathcal{M}_n^{-1}(f)
$$

= $\mathcal{F} \circ W_{\alpha+2n}(\mathcal{M}_n^{-1}(f))$
= $\mathcal{F} \circ W_{\alpha,n}(f).$

Proposition 13. For all $f \in D_n(\mathbb{R})$, we have the following decomposition

 $\mathcal{F}_{B,S}^{\alpha,n}(f) = \mathcal{F}_{B,S}^{\beta,m} \circ \ {}^tS_{\alpha,\beta}^{n,m}(f).$

Proof. It follows from (33), Remark 7 and Theorem 3.(iii) that

$$
\mathcal{F}_{B,S}^{\alpha,n}(f) = \mathcal{F}_{B,S}^{\alpha+2n} \circ \mathcal{M}_n^{-1}(f)
$$

\n
$$
= \mathcal{F}_{B,S}^{\beta+2m} \circ {}^{t}S_{\alpha+2n,\beta+2m} \circ \mathcal{M}_n^{-1}(f)
$$

\n
$$
= \mathcal{F}_{B,S}^{\beta+2m} \mathcal{M}_m^{-1} \circ \mathcal{M}_m \circ {}^{t}S_{\alpha+2n,\beta+2m} \circ \mathcal{M}_n^{-1}(f)
$$

\n
$$
= \mathcal{F}_{B,S}^{\beta,m} \circ {}^{t}S_{\alpha,\beta}^{n,m}(f).
$$

 \blacksquare

Theorem 9. (Paley-Wiener) Let $a > 0$ and f a function in $\mathcal{D}_{a,n}(\mathbb{R})$ then $\mathcal{F}_{B,S}^{\alpha,n}$ can be extended to an analytic function on $\mathbb C$ that we denote again $\mathcal{F}_{B,S}^{\alpha,n}(f)$ verifying

 $\forall k \in \mathbb{N}^*, \quad |\mathcal{F}_{B,S}^{\alpha,n}(f)(z)| \leq Ce^{a|z|}.$

Proof. The result follows directly from Remark 7, Lemma 1(i) and Theorem 2.

REFERENCES

- [1] R. F. Al Subaie and M. A. Mourou, Transmutation Operators Associated with a Bessel Type Operator on The Half Line and Certain of Their Applications, Tamsui Oxford Journal of Information and Mathematical Sciences 29(3) (2013) 329-349.
- [2] L. Kamoun, S. Negzaoui, Sonine Transform Associated to Bessel-Struve Operator, arXiv:1011.5394v1.
- [3] L. Kamoun and M. Sifi, Bessel-Struve Intertwining Operator and Generalized Taylor Series on the Real Line, Integral Transforms and Special Functions, Vol.16, January 2005, 39-55.
- [4] K. Trimèche, Generalized Harmonic Analysis and Wavelets Packets, Gordon and Breach Science Publishers, 2001.

E-mail address: a.abouelaz@fsac.ac.ma E-mail address: achakachak@hotmail.fr E-mail address: r.daher@fsac.ac.ma E-mail address: safouanenajat@gmail.com