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Abstract:- This paper presents formulation of Economic Ordered Quantity (EOQ) problem considering Order 

Size Limits, Stock Limits and Prohibited Ordering Segments, after that a modified PSO algorithm that utilizes 

the PSO with double chaotic maps is presented to solve this problem. In proposed approach, the logistic map 

and lozi map are applied alternatively to the velocity updating function of the particles. Using PSO with 

irregular velocity updates which is performed by these maps forces the particles to search greater space for best 

global solution. However the random function itself derived from a well-defined mathematical expression which 

limits its redundancy hence in the paper we are utilizing the two different chaotic maps which are used 

alternatively this mathematically increased the randomness of the function. The simulation of the algorithm for 

the formulated EOQ problem verifies the effectiveness and superiority of the algorithm over standard 

algorithms for such a complex problem which are difficult to solve by analytical approaches. 
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I. INTRODUCTION 
 The Economic Ordered Quantity (EOQ) in inventory framework is the key part of inventory systems 

and considered as a significant important part of inventory systems. The EOQ issue is considered as 

optimization issue in which minimization of the aggregate inventory holding expenses and requesting expenses 

is situated as principle goal which ought to be found inside the equality and inequality constraints (operational 

compels) limitations. The operational requirements are alluded as maximum inventory level restrictions, change 

in every unit expense relying on request size, accumulating rate points of confinement, and deterioration losses 

are considered for reasonable operation. Additionally the base requested amount impacts might likewise be 

considered. These contemplations make the EOQ issue a vast scale very non-direct compelled streamlining 

issue.      An alternate viewpoint other than expense which compels to utilize the EOQ is the new stockpiling 

approaches and regulations which governs the inventory managers to consider the environmental effects of the 

operation. Under these circumstances, requested inventory is not just governed by the unit's capacity of 

minimizing the total inventory holding costs and ordering cost, but also their capability of satisfying the 

governing policies requirements. In this paper the EOQ problem under the constrains for order size limits, stock 

limits and prohibited ordering segments is discussed and then after applied to the EOQ inventory mathematical 

model for deteriorating items with exponentially decreasing demand. Finally the objective function for the 

combined model is derived to use with PSO algorithm. The rest of the paper is arranged as second segment 

shows a concise audit of the related works, the third and fourth section talks about the issue definition and 

mathematical modeling, while fifth section clarifies the PSO and the variations utilized followed by and sixth 

sections which presents a brief review of chaotic maps, at last in section seventh and eight separately exhibits 

the simulated results and conclusion. 

 

II. LITERATURE REVIEW 
 This section discusses some of the recent literatures related to the EOQ problem, inventory modeling 

and particle swarm optimization techniques. Liang Yuh Ouyang et al. [1] presented an EOQ inventory 

mathematical model for deteriorating items with exponentially decreasing demand. Their model also handles the 

shortages and variable rate partial backordering which dependents on the waiting time for the next 

replenishment. Kuo-Lung Hou et al. [10] presents an inventory model for deteriorating items considering the 

stock-dependent selling rate under inflation and time value of money over a finite planning horizon. The model 

allows shortages and partially backlogging at exponential rate. Lianxia Zhao [7] studied an inventory model 

with trapezoidal type demand rate and partially backlogging for Weibull-distributed deterioration items and 
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derived an optimal inventory replenishment policy.  Kai-Wayne Chuang et al. [2] studied pricing strategies in 

marketing, with objective to find the optimal inventory and pricing strategies for maximizing the net present 

value of total profit over the infinite horizon. The studied two variants of models: one without considering 

shortage, and the other with shortage. Jonas C.P. Yu [4] developed a deteriorating inventory system with only 

one supplier and one buyer. The system considers the collaboration and trade credit between supplier and buyer. 

The objective is to maximize the total profit of the whole system when shortage is completely backordered. The 

literature also discuss the negotiation mechanism between supplier and buyer in case of shortages and payment 

delay. Michal Pluhacek et al [15] compared the performance  of  two  popular evolutionary  computational  

techniques  (particle  swarm optimization and differential evolution) is compared in the  task  of  batch  reactor  

geometry  optimization.  Both algorithms are enhanced with chaotic pseudo-random number generator 

(CPRNG) based on Lozi chaotic map.  The application of Chaos Embedded Particle Swarm Optimization for 

PID Parameter Tuning is presented in [16]. Magnus Erik et al [17] gives a list of good choices of parameters for 

various optimization scenarios which should help the practitioner achieve better results with little effort. 

 

III. PROBLEM FORMULATION 
 The objective of an EOQ problem is to minimize the total inventory holding costs and ordering costs 

which should be found within the equality and inequality constraints (operational constrains) limitations. The 

simplified cost function of each inventory item can be represented as described in (2) 

𝐶𝑇 =  𝑐𝑖(𝑆𝑖)

𝑛

𝑖=1

………………… . . (3.1) 

𝑐𝑖 𝑆𝑖 = 𝛼𝑖 ∗ 𝑆𝑖 …… . . . (3.2) 

𝑤𝑕𝑒𝑟𝑒  
𝐶𝑇 = 𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝐶𝑜𝑠𝑡 

𝑐𝑖 = 𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐼𝑛𝑣𝑒𝑟𝑡𝑜𝑟𝑦 𝑖 
𝛼𝑖 = 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 𝑜𝑓 𝐼𝑛𝑣𝑒𝑟𝑡𝑜𝑟𝑦 𝑖  
𝑆𝑖 = 𝑂𝑟𝑑𝑒𝑟𝑒𝑑 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐼𝑛𝑣𝑒𝑟𝑡𝑜𝑟𝑦 𝑖 

3.2. Equality and Inequality Constraints 

3.2.1 Demand and Stock Balance Equation: For Demand and Stock balance, an equality constraint should be 

satisfied. The total stock should be equal or greater than the total demand plus the total Deterioration loss 

 𝑆𝑖 ,𝑑𝑒𝑚𝑎𝑛𝑑 + 𝑆𝑖 ,𝑙𝑜𝑠𝑠 ………… . . (3.14)

𝑛

𝑖=1

 

𝑤𝑕𝑒𝑟𝑒 𝑆𝑖 ,𝑑𝑒𝑚𝑎𝑛𝑑  𝑆𝑖 ,𝑙𝑜𝑠𝑠  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡𝑕𝑒 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 𝑎𝑛𝑑   

𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑖𝑡𝑕 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑖𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑕𝑒  
𝑢𝑛𝑖𝑡𝑠 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑡𝑕𝑎𝑡 𝑐𝑎𝑛 𝑏𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 𝐷𝑒𝑚𝑎𝑛𝑑  𝐷𝑖  
𝑎𝑛𝑑 𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛  𝐿𝑖  𝑐𝑜𝑒𝑓fi𝑐𝑖𝑒𝑛𝑡𝑠 [2] 𝑎𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠: 

 𝑆𝑖𝐷𝑖 +  𝑆𝑖𝐿𝑖 ……… . (3.15)

𝑛

𝑖=1

𝑛

𝑖=1

 

 

3.3.1 Minimum and Maximum Order Size Limits: the order size of each inventory should be within its 

minimum and maximum orderable size limits. Corresponding inequality constraint for each inventory is 

𝑆𝑖 ,𝑚𝑖𝑛 ≤ 𝑆𝑖 ≤ 𝑆𝑖 ,𝑚𝑎𝑥 ………… . . (9)  

𝑤𝑕𝑒𝑟𝑒 𝑆𝑖 ,𝑚𝑖𝑛  𝑎𝑛𝑑 𝑆𝑖 ,𝑚𝑎𝑥  𝑎𝑟𝑒 𝑡𝑕𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑛𝑑 𝑚𝑎𝑥𝑖𝑚𝑢𝑚  

𝑜𝑟𝑑𝑒𝑟𝑎𝑏𝑙𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖𝑡𝑕  𝑖𝑛𝑣𝑒𝑟𝑡𝑜𝑟𝑦, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 
 

3.3.2 Stock Limits: The actual storing quantities of all the inventories are restricted by their corresponding stock 

size limits. The Stock Limits constraints can be written as follows: 

𝑆𝑖 ,𝑜𝑟𝑑𝑒𝑟𝑒𝑑 + 𝑆𝑖 ,𝑜𝑛𝑠𝑡𝑜𝑐𝑘
0 ≤ 𝑈𝑆𝑖  𝑎𝑛𝑑 𝑆𝑖 ,𝑜𝑟𝑑𝑒𝑟𝑒𝑑 + 𝑆𝑖,𝑜𝑛𝑠𝑡𝑜𝑐𝑘

0 ≥  𝐿𝑆𝑖 …………(10) 

𝑤𝑕𝑒𝑟𝑒 𝑆𝑖
0 𝑖𝑠 𝑡𝑕𝑒 𝑜𝑛𝑠𝑜𝑡𝑐𝑘 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑡𝑕𝑒 𝑖𝑡𝑕  𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦  

𝑈𝑆𝑖  𝑎𝑛𝑑 𝐿𝑆𝑖  𝑎𝑟𝑒 𝑡𝑕𝑒 max 𝑎𝑛𝑑𝑚𝑖𝑛𝑠𝑡𝑜𝑐𝑘 𝑙𝑖𝑚𝑖𝑡𝑠 𝑜𝑓  
𝑖𝑡𝑕 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑖𝑡𝑒𝑚 , 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 
To consider the stock limits and Order limits constraints at the same time, (10) and (9) can be rewritten as an 

inequality constraint as follows: 

max 𝑆𝑖,𝑚𝑖𝑛 , 𝑆𝑖 ,𝑖𝑛𝑠𝑡𝑜𝑐𝑘
0 + 𝑈𝑆𝑖 ≤ 𝑆𝑖 ,𝑜𝑟𝑑𝑒𝑟𝑒𝑑 ≤ min⁡{𝑆𝑖 ,𝑚𝑎𝑥 , 𝑆𝑖,𝑖𝑛𝑠𝑡𝑜𝑐𝑘

0 + 𝐿𝑆𝑖}. (11) 

3.3.3 EOQ Problem Considering Prohibited Ordering Segments: In some cases, the entire ordering range of an 

inventory is not always available due to physical operation limitations. Items may have prohibited ordering 

segments due to nature of items themselves or associated auxiliaries. Such situation may lead to improper 
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ordering in certain ranges of inventory [6]. Therefore, for items with prohibited ordering segments, there are 

additional constraints on the items ordering segments as follows: 

𝑃𝑖 ∈  

𝑆𝑖 ,𝑚𝑖𝑛 ≤ 𝑆𝑖 ≤ 𝑆𝑖 ,1
𝑙                                          

𝑆𝑖 ,𝑘−1
𝑢 ≤ 𝑆𝑖 ≤ 𝑆𝑖 ,𝑘

𝑙       ,       𝑘 = 2,3, …𝑝𝑧𝑖
𝑆𝑖 ,𝑝𝑧𝑖
𝑢 ≤ 𝑆𝑖 ≤ 𝑆𝑖 ,𝑚𝑎𝑥                                     

  

𝑖 = 1,2, … 𝑛𝑃𝑍 ……… (12) 

𝑤𝑕𝑒𝑟𝑒 𝑆𝑖 ,𝑘
𝑙  𝑎𝑛𝑑 𝑆𝑖 ,𝑘

𝑢  𝑎𝑟𝑒, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦, 𝑡𝑕𝑒 𝑙𝑜𝑤𝑒𝑟 𝑎𝑛𝑑 𝑢𝑝𝑝𝑒𝑟 

𝑏𝑜𝑢𝑛𝑑𝑠 𝑜𝑓 𝑝𝑟𝑜𝑕𝑖𝑏𝑖𝑡𝑒𝑑 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑖. 
𝐻𝑒𝑟𝑒 𝑝𝑧𝑖 , 𝑖𝑠 𝑡𝑕𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑕𝑖𝑏𝑖𝑡𝑒𝑑 𝑧𝑜𝑛𝑒𝑠 𝑜𝑓 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 

 𝑖 𝑎𝑛𝑑 𝑛𝑃𝑍  𝑖𝑠 𝑡𝑕𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑖𝑒𝑠 𝑤𝑕𝑖𝑐𝑕 𝑕𝑎𝑣𝑒  
𝑝𝑟𝑜𝑕𝑖𝑏𝑖𝑡𝑒𝑑 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠. 
 

IV. MATHEMATICAL MODELING 
The mathematical model in this paper is rendered from reference [1] with following notation and assumptions. 

However the modification according to different models are performed and marked during the explanation. 

Notation:  

𝑐1  : Holding cost, ($/per unit)/per unit time.  

𝑐2  : Cost of the inventory item, $/per unit. 

𝑐3  : Ordering cost of inventory, $/per order.  

𝑐4  : Shortage cost, ($/per unit)/per unit time.  
𝑐5  : Opportunity cost due to lost sales, $/per unit.  
𝑡1 : Time at which shortages start.  
𝑇 : Length of each ordering cycle.  
𝑊 : The maximum inventory level for each ordering cycle.  
𝑆 : The maximum amount of demand backlogged for each ordering cycle.  

𝑄 : The order quantity for each ordering cycle.  
𝐼𝑛𝑣 𝑡   : The inventory level at time t. 

 

Assumptions:  

1. The inventory system involves only one item and the planning horizon is infinite.  

2. The replenishment occurs instantaneously at an infinite rate.  

3. The deteriorating rate, 𝜃 (0 < 𝜃 < 1), is constant and there is no replacement or repair of deteriorated units 

during the period under consideration.  

4. The demand rate 𝑅(𝑡), is known and decreases exponentially.  

𝑅 𝑡 =  
𝐴𝑒−𝜆𝑡 , 𝐼 𝑡 > 0

𝐷 , 𝐼 𝑡 ≤ 0
 ………………… . (4.1) 

Where 𝐴 (> 0) is initial demand and 𝜆 (0 < 𝜆 <  𝜃) is a constant governing the decreasing rate of the demand. 

5. During the shortage period, the backlogging rate is variable and is dependent on the length of the waiting time 

for the next replenishment. The longer the waiting time is, the smaller the backlogging rate would be. Hence, the 

proportion of customers who would like to accept backlogging at time 𝑡 is decreasing with the waiting time 

(𝑇 − 𝑡) waiting for the next replenishment. To take care of this situation we have defined the backlogging rate 

to be 
1

1+ 𝛿 𝑇−𝑡 
 when inventory is negative. The backlogging parameter 𝛿 is a positive constant 𝑡1 < 𝑡 < 𝑇. 

 

4.1 MODEL FORMULATION 

 Here, the replenishment policy of a deteriorating item with partial backlogging is considered. The 

objective of the inventory problem is to determine the optimal order quantity and the length of ordering cycle so 

as to keep the total relevant cost as low as possible. The behavior of inventory system at any time is depicted in 

Figure 1. 
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Figure 4: Inventory level 𝑰 𝒕  𝒗𝒔. 𝒕  𝒕𝒊𝒎𝒆 . 

 

 Replenishment is made at time 𝑡 = 0 and the inventory level is at its maximum 𝑊. Due to both the 

market demand and deterioration of the item, the inventory level decreases during the period [0, 𝑡1] , and 

ultimately falls to zero at 𝑡 = 𝑡1. Thereafter, shortages are allowed to occur during the time interval [𝑡1, 𝑇] and 

all of the demand during the period [𝑡1, 𝑇] is partially backlogged. 

 

 As described above, the inventory level decreases owing to demand rate as well as deterioration during 

inventory interval [0, 𝑡1]. Hence, the differential equation representing the inventory status is given by 
𝑑𝐼𝑛𝑣 𝑡 

𝑑𝑡
+ 𝜃𝐼𝑛𝑣 𝑡 = −𝐴𝑒−𝜆𝑡 , 0 ≤ 𝑡 ≤ 𝑡1 ……… . (4.2)  

with the boundary condition 𝐼𝑛𝑣 0 =  𝑊. The solution of equation (1) is 

𝐼𝑛𝑣 𝑡 =  
𝐴e−𝑡 λ−θ 

λ − θ
+ 𝑊 −

𝐴

λ − θ
 e−θ𝑡 ……… (4.3) 

Since the inventory falls to zero at time 𝑡1, applying the condition to equation (2) gives 

𝐼𝑛𝑣 𝑡1 =  
𝐴e−𝑡1 λ−θ 

λ − θ
+ 𝑊 −

𝐴

λ − θ
 e−θ𝑡1 = 0……(4.4) 

From the above equation we can get the value of 𝑊 (maximum inventory level) 

𝑊 = −
𝐴 𝑒−𝑡1 𝜆−𝜃 − 1 

𝜆 − 𝜃
……… . . (4.5) 

Where 𝑊 must satisfy 𝐿𝐵 ≤ 𝑊 ≤ 𝑈𝐵. 

 

Now putting the value of equation (4.5) into equation (4.3) 

𝐼𝑛𝑣 𝑡 =  
𝐴𝑒−𝑡 𝜆−𝜃 

𝜆 − 𝜃
−
𝐴 𝑒−𝑡1 𝜆−𝜃 − 1 

𝜆 − 𝜃
−

𝐴

𝜆 − 𝜃
 𝑒−𝜃𝑡 . . (4.6) 

By simplifying the equation (4), the inventory level at time 𝑡 can be given as 

𝐼𝑛𝑣 𝑡 = −
𝐴 −𝑒−𝑡 𝜆−𝜃 + 𝑒−𝑡1 𝜆−𝜃  𝑒−𝜃𝑡

𝜆 − 𝜃
…… . . (4.7) 

During the shortage interval [𝑡1, 𝑇], the demand at time 𝑡 is partly backlogged at the fraction 
1

1+𝛿 𝑇−𝑡 
 Thus, the 

differential equation governing the amount of demand backlogged is as below. 
𝑑𝐼𝑛𝑣 𝑡 

𝑑𝑡
=

𝐷

1 + 𝛿 𝑇 − 𝑡 
, 𝑡1 < 𝑡 ≤ 𝑇…………… . (4.8) 

with the boundary condition 𝐼 𝑡1 = 0 . The solution of equation (6) can be given by  

𝐼𝑛𝑣 𝑡 =
𝐷

𝛿
{ln[1 + 𝛿(𝑇 − 𝑡)] − ln⁡[1 + 𝛿(𝑇 − 𝑡1)]}, 𝑡1 ≤ 𝑡 ≤ 𝑇……… . (4.9) 

Let 𝑡 = 𝑇 in (7), we obtain the maximum amount of demand backlogged per cycle as follows: 

𝑆 = −𝐼𝑛𝑣 𝑇 =
𝐷

𝛿
ln 1 + 𝛿 𝑇 − 𝑡1  …………… (4.10) 

Hence, the ordered quantity per cycle is given by 
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𝑄 = 𝑊 + 𝑆 =
𝐴

𝜃 − 𝜆
 𝑒 𝜃−𝜆 𝑡1 − 1 +

𝐷

𝜆
ln 1 + 𝛿 𝑇 − 𝑡1  ………… . . (4.11)  

Where 𝑄 must satisfy 𝑆𝑚𝑖𝑛 ≤ 𝑄 ≤ 𝑆𝑚𝑎𝑥  𝑎𝑛𝑑 𝑄 ∉ 𝑆Prohibited . 

The inventory holding cost per cycle is 

𝐻𝐶 =  𝑐1𝐼𝑛𝑣 𝑡 𝑑𝑡 =
𝑐1𝐴

𝜃 𝜃 − 𝜆 
𝑒−𝜆𝑡1  𝑒𝜃𝑡1 − 1 −

𝜃

𝜆
 𝑒𝜆𝑡1 − 1  ……… . . (4.12) 

𝑡1

0

 

The deterioration cost per cycle is  

𝐷𝐶 = 𝑐2[𝑊 −  𝑅 𝑡 𝑑𝑡]
𝑡1

0

 

= 𝑐2[𝑊 −  𝐴𝑒−𝜆𝑡 ]
𝑡1

0

 

= 𝑐2𝐴  
1

𝜃 − 𝜆
 𝑒 𝜃−𝜆 𝑡1 − 1 −

1

𝜆
 1 − 𝑒1

−𝜆𝑡   …… . . (4.13) 

The shortage cost per cycle is  

𝑆𝐶 = 𝑐4  − 𝐼 𝑡 𝑑𝑡 
𝑇

𝑡1

 = 𝑐4𝐷   
𝑇 − 𝑡1

𝛿
−

1

𝛿2
ln 1 + 𝛿 𝑇 − 𝑡1     … . (4.14) 

The opportunity cost due to lost sales per cycle is 

𝐵𝐶 = 𝑐5   1 −
1

1 + 𝛿 𝑇 − 𝑡 
 𝐷 𝑑𝑡 = 𝑐5𝐷    𝑇 − 𝑡1 −

1

𝛿
ln 1 + 𝛿 𝑇 − 𝑡1   … (4.15)

𝑇

𝑡1

 

Therefore, the average total cost per unit time per cycle is 

𝑇𝑉𝐶 ≡ 𝑇𝑉𝐶(𝑡1, 𝑇) 

= (holding cost + deterioration cost + ordering cost + shortage cost + opportunity cost due to lost sales)/ length 

of ordering cycle 

𝑇𝑉𝐶 =  
1

𝑇
 

𝑐1𝐴

𝜃 𝜃 − 𝜆 
𝑒−𝜆𝑡1   𝑒𝜃𝑡1 − 1 −

𝜃

𝜆
 𝑒𝜆𝑡1 − 1  + 𝑐2𝐴  

𝑒 𝜃−𝜆 𝑡1 − 1

𝜃 − 𝜆
−

1 − 𝑒−𝜆𝑡1

𝜆
 

+ 𝑐3𝐷  
𝑐4

𝜆
+ 𝑐5  𝑇 − 𝑡1 −  

ln 1 + 𝛿 𝑇 − 𝑡1  

𝛿
   … 4.16 

 

Further simplification gives 

𝑇𝑉𝐶 =
1

𝑇
 
𝐴 𝑐1 + 𝜃𝑐2 

𝜃 𝜃 − 𝜆 
 𝑒 𝜃−𝜆 𝑡1 −  𝜃 − 𝜆 𝑡1 − 1 −

𝐴 𝑐1 + 𝜃𝑐2 

𝜃𝜆
 1 − 𝜆𝑡1 − 𝑒−𝜆𝑡1 + 𝑐3

+
𝐷 𝑐4 + 𝛿𝑐5 

 𝛿
  𝑇 − 𝑡1 −

ln 1 + 𝛿 𝑇 − 𝑡1  

𝛿
  …… . . … (4.17) 

Under the following constrains 

 

𝑆𝑚𝑖𝑛 ≤
𝐴

𝜃 − 𝜆
 𝑒 𝜃−𝜆 𝑡1 − 1 +

𝐷

𝜆
ln 1 + 𝛿 𝑇 − 𝑡1  ≤ 𝑆𝑚𝑎𝑥 … (4.18) 

𝐴

𝜃 − 𝜆
 𝑒 𝜃−𝜆 𝑡1 − 1 +

𝐷

𝜆
ln 1 + 𝛿 𝑇 − 𝑡1  ∉ 𝑆Prohibited …(4.19) 

𝐿𝐵 ≤ −
𝐴 𝑒−𝑡1 𝜆−𝜃 − 1 

𝜆 − 𝜃
≤ 𝑈𝐵………… . (4.20) 

The objective of the model is to determine the optimal values of 𝑡1 and 𝑇 in order to minimize the average total 

cost per unit time (TVC) within the given constrains.  

 

V. PARTICLE SWARM OPTIMIZATION (PSO) 
 The PSO algorithm is inspired by the natural swarm behavior of birds and fish. It was introduced by 

Eberhart and Kennedy in 1995 as an alternative to other ECTs, such as Ant Colony Optimization, Genetic 

Algorithms (GA) or Differential Evolution (DE). Each particle in the population represents a possible solution 

of the optimization problem, which is defined by its cost function. In each iteration, a new location (combination 

of cost function parameters) of the particle is calculated based on its previous location and velocity vector 

(velocity vector contains particle velocity for each dimension of the problem).The PSO algorithm works by 

simultaneously maintaining several candidate solutions in the search space. During each iteration of the 

algorithm, each candidate solution is evaluated by the objective function being optimized, determining the 

fitness of that solution. Each candidate solution can be thought of as a particle “flying” through the fitness 

landscape finding the maximum or minimum of the objective function.                         Initially, the PSO 

algorithm chooses candidate solutions randomly within the search space. It should be noted that the PSO 
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algorithm has no knowledge of the underlying objective function, and thus has no way of knowing if any of the 

candidate solutions are near to or far away from a local or global maximum. The PSO algorithm simply uses the 

objective function to evaluate its candidate solutions, and operates upon the resultant fitness values. 

 

 Each particle maintains its position, composed of the candidate solution and its evaluated  fitness, and 

its velocity. Additionally, it remembers the best  fitness value it has achieved thus far during the operation of the 

algorithm, referred to as the individual best fitness, and the candidate solution that achieved this fitness, referred 

to as the individual best position or individual best candidate solution. Finally, the PSO algorithm maintains the 

best fitness value achieved among all particles in the swarm, called the global best fitness, and the candidate 

solution that achieved this fitness, called the global best position or global best candidate solution. 

 

The PSO algorithm consists of just three steps, which are repeated until some stopping condition is met: 

1. Evaluate the fitness of each particle 

2. Update individual and global best fitness‟s and positions 

3. Update velocity and position of each particle 

4. Repeat the whole process till the  

 

 The first two steps are fairly trivial. Fitness evaluation is conducted by supplying the candidate solution 

to the objective function. Individual and global best fitness‟s and positions are updated by comparing the newly 

evaluated finesses against the previous individual and global best fitness‟s, and replacing the best fitness‟s and 

positions as necessary. 

The velocity and position update step is responsible for the optimization ability of the PSO algorithm. The 

velocity of each particle in the swarm is updated using the following equation: 

𝑣 𝑖 + 1 = 𝑤 ∗ 𝑣 𝑖 + 𝑐1 ∗  𝑝𝐵𝑒𝑠𝑡 − 𝑥 𝑖  + 𝑐2 ∗  𝑔𝐵𝑒𝑠𝑡 − 𝑥 𝑖  ………(5.1) 

Modified PSO with chaos driven pseudorandom number perturbation 

𝑣 𝑖 + 1 = 𝑤 ∗ 𝑣 𝑖 + 𝑐1 ∗ 𝑅𝑎𝑛𝑑 ∗  𝑝𝐵𝑒𝑠𝑡 − 𝑥 𝑖  + 𝑐2 ∗ 𝑅𝑎𝑛𝑑 ∗  𝑔𝐵𝑒𝑠𝑡 − 𝑥 𝑖  ……… (5.2) 

A chaos driven pseudorandom number perturbation (𝑅𝑎𝑛𝑑) is used in the main PSO formula (Eq. (13)) that 

determines new „„velocity‟‟ and thus the position of each particle in the next iterations (or migration cycle). The 

perturbation facilities the better search in the available search space hence provides much better results. 

𝑊𝑕𝑒𝑟𝑒:  
𝑣(𝑖 + 1)  −  𝑁𝑒𝑤 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 
𝑣(𝑖)  −  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 
𝑐1  , 𝑐2  −  𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟𝑠. 
𝑝𝐵𝑒𝑠𝑡 −  𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑢𝑛𝑑 𝑏𝑦 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 
𝑔𝐵𝑒𝑠𝑡 −  𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑎 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛.  

𝑅𝑎𝑛𝑑 −  𝑅𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  0, 1 . 𝐶𝑕𝑎𝑜𝑠 𝑛𝑢𝑚𝑏𝑒𝑟  
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑖𝑠 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑜𝑛𝑙𝑦 𝑕𝑒𝑟𝑒. 

𝑥(𝑖)  −  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 
The new position of a particle is then given by (5.3), where 𝑥(𝑖 +  1) is the new position: 

𝑥 𝑖 + 1 = 𝑥 𝑖 + 𝑣 𝑖 + 1 ………… . . (5.3) 

Inertia weight modification PSO strategy has two control parameters 𝑤𝑠𝑡𝑎𝑟𝑡  and 𝑤𝑒𝑛𝑑  . A new w for each 

iteration is given by (5.4), where 𝑖 stand for current iteration number and n for the total number of iterations. 

𝑤 = 𝑤𝑠𝑡𝑎𝑟𝑡 −
  𝑤𝑠𝑡𝑎𝑟𝑡 − 𝑤𝑒𝑛𝑑  ∗ 𝑖 

𝑛
…………… . (5.4) 

Each of the three terms (𝑤 ∗ 𝑣 𝑖 , 𝑐1 ∗ 𝑅𝑎𝑛𝑑 ∗  𝑝𝐵𝑒𝑠𝑡 − 𝑥 𝑖  𝑎𝑛𝑑 𝑐2 ∗ 𝑅𝑎𝑛𝑑 ∗  𝑔𝐵𝑒𝑠𝑡 − 𝑥 𝑖   of the velocity 

update equation have different roles in the PSO algorithm.  

 

 The first term 𝑤 is the inertia component, responsible for keeping the particle moving in the same 

direction it was originally heading. The value of the inertial coefficient 𝑤 is typically between 0.8 and 1.2, 

which can either dampen the particle‟s inertia or accelerate the particle in its original direction. Generally, lower 

values of the inertial coefficient speed up the convergence of the swarm to optima, and higher values of the 

inertial coefficient encourage exploration of the entire search space. 

 The second term 𝑐1 ∗ 𝑅𝑎𝑛𝑑 ∗  𝑝𝐵𝑒𝑠𝑡 − 𝑥 𝑖   called the cognitive component, acts as the particle‟s 

memory, causing it to tend to return to the regions of the search space in which it has experienced high 

individual fitness. 

The cognitive coefficient 𝑐1 is usually close to 2, and affects the size of the step the particle takes toward its 

individual best candidate solution 𝑝𝐵𝑒𝑠𝑡. 



A Modified PSO Based Solution Approach for Economic Ordered Quantity Problem with … 

www.irjes.com                                                                69 | Page 

The third term 𝑐2 ∗ 𝑅𝑎𝑛𝑑 ∗  𝑔𝐵𝑒𝑠𝑡 − 𝑥 𝑖  , called the social component, causes the particle to move to the best 

region the swarm has found so far. The social coefficient 𝑐2 is typically close to 2, and represents the size of the 

step thfe particle takes toward the global best candidate solution 𝑔𝐵𝑒𝑠𝑡 the swarm has found up until that point. 

 

VI. CHAOTIC MAPS 
 This section contains the description of discrete chaotic maps used as the chaotic pseudorandom 

inventory for PSO. In this research, direct output iterations of the chaotic map were used for the generation of 

real numbers for the main PSO formula that determines new velocity, thus the position of each particle in the 

next iteration (See (2) in section 2). The procedure of embedding chaotic dynamics into evolutionary algorithms 

is given in [15][16] while the techniques for selecting proper parameter values in discussed in [17].  

 

6.1 LOGISTIC MAP  

 The logistic map is a polynomial mapping (equivalently, recurrence relation) of degree 2, shows the 

complex, chaotic behavior from very simple non-linear dynamical equations. Mathematically, the logistic map 

is written 

𝑋𝑛+1 = 𝜇𝑋𝑛 1 − 𝑋𝑛 …………… (6.1) 

 
Figure 6:1: Plot of logistic map 𝝁 = 𝟒 and 𝑿𝟎 = 𝟎. 𝟔𝟑 after 100 iterations. 

 

6.2. LOZI MAP  

The Lozi map is a simple discrete two-dimensional chaotic map. The map equations are given in (17).  

𝑋𝑛+1 = 1 − 𝑥 𝑋𝑛  + 𝑏𝑌𝑛 ………… . (6.2𝑎) 

𝑌𝑛+1 = 𝑋𝑛 ……………… . (6.2𝑏) 

 
Figure 6:2: The 2D Plot of Lozi Map for 𝒂 = 𝟏. 𝟕, 𝒃 = 𝟎. 𝟓 after 1000 iterations 
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Figure 6:3: Plot of Lozi map for 𝒂 = 𝟏. 𝟕, 𝒃 = 𝟎. 𝟓 after 100 iterations 

 

VII. IMPLEMENTATION OF IMPROVED PSO ALGORITHM FOR ECONOMIC 

ORDERED QUANTITY (EOQ) PROBLEMS 
 Since the decision variables in EOQ problems are 𝑡1 and 𝑇 with 𝑆 = {𝑆1 , 𝑆2 , … . , 𝑆𝑛 } where 𝑆𝑖  ordering 

quantity of 𝑖𝑡𝑕  inventory, the structure of a particle is composed of a set of elements corresponding to 

the [𝑡1, 𝑇, 𝑆]. Therefore, particle‟s position at iteration 𝑘 can be represented as the vector 

𝑋𝑖
𝑘 =  𝑃𝑖1

𝑘 , 𝑃𝑖2
𝑘 …… . . , 𝑃𝑖𝑚

𝑘   where 𝑚 =  𝑛 + 2 and  𝑛 is the number of inventories. The velocity of particle 𝑖 
corresponds to the generation updates for all inventories. The process of the proposed PSO algorithm can be 

summarized as in the following steps. 

1. Initialize the position and velocity of a population at random while satisfying the constraints. 

2. Update the velocity of particles. 

3. Modify the position of particles to satisfy the constraints, if necessary. 

4. Generate the trial vector through operations presented in section 4. 

5. Update and Go to Step 2 until the stopping criteria is satisfied. 

 
Figure 7: Flow Chart of the Proposed Algorithm. 
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VIII. SIMULATION RESULTS 
The proposed IPSO approach is applied to three different inventory systems explained in section 3 and 

evaluated by all three PSO models as follows: 

• The conventional PSO 

• The PSO with chaotic sequences 

• The PSO with alternative chaotic operation 

 

 The simulation of all algorithms is performed using MATLAB. The population size 𝑁𝑃  and maximum 

iteration number 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  are set as 100 and 100, respectively. 𝑤𝑚𝑎𝑥   and 𝑤𝑚𝑖𝑛   are set to 0.9 and 0.1 

respectively because these values are widely accepted and verified in solving various optimization problems. 

The list of all values used for the system are shown in the table below 

                                               

Table 1: parameter values used for different PSO algorithms 

Name of Variable  Value Assigned  

𝑐1 2 

𝑐2 1 

𝑤𝑚𝑎𝑥  0.9 

𝑤𝑚𝑖𝑛  0.1 

𝜇 (logistic map) 4.0 

𝑘 (logistic map) 0.63 

𝑎 (lozi map) 1.7 

𝑏 (lozi map) 0.5 

Total Particles 100 

Maximum Iterations 100 

 

                                                     Table 2: values of system variables: 

 Variable Value 

Variable Name Scenario 1 Scenario 2 

𝐴 12 12 

𝜃 0.08 0.08 

𝛿 2 2 

𝜆 0.03 0.03 

𝑐1 0.5 0.5 

𝑐2 1.5 1.5 

𝑐3 10 10 

𝑐4 2.5 2.5 

𝑐5 2 2 

𝐷 8 8 

𝛼 5 5 

𝛽 10 10 

𝛾 0.04 N/A 

𝑆𝑚𝑖𝑛  1 1 

𝑆𝑚𝑎𝑥  100 95 

𝑁 N/A 15 

𝑆𝑠𝑒𝑔  N/A 6 

𝛽1  N/A 10 
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Figure 8.1: surface plot for the normal inventory system. With respect to 𝑡1 (the time at which shortage starts) 

and 𝑇(ordering cycle time) the figure shows a smooth and continuous curve and hence can be solved by 

analytical technique also. 

 

 
Figure 8.2: surface plot for the order segment dependent inventory cost type model. With respect to 𝑡1 (the time 

at which shortage starts) and 𝑇(ordering cycle time) the figure shows much abrupt variations and many 

discontinuities in the curve and hence can be very difficult to solve by analytical techniques. 

 
Figure 8.3: the value of objective function (fitness value or TVC) at every iteration of PSO for model 1. 
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Figure 8.4: the best values of variables 𝑡1 and 𝑇 for all three PSO for model 1. 

 

Table 3: Best Fitness Values by all three PSO for model 1. 

Type of PSO Best Fitness (TVC) 

PSO 11.6625 

PSO1 11.4125 

PSO2 11.2736 

 

IX. CONCLUSION AND FUTURE SCOPE 
 In this paper presents the mathematical model for inventories systems Considering Order Size Limits, 

Stock Limits and Prohibited Ordering Segments the paper also presents the derivations for evaluation of the 

function parameters for practical applications and finally it proposes an efficient approach for solving EOQ 

problem under the mentioned constrains applied simultaneously. Which may not be solved by analytical 

approach hence the meta-heuristic approach has been accepted in the form of standard PSO furthermore the 

performance of standard PSO is also enhanced by alternative use of two different chaotic maps for velocity 

updating finally it is applied to the EOQ problem for the inventory models discussed above and tested for 

different systems and objectives.  The simulation  result shows the proposed approach finds the solution very 

quickly with much lesser mathematical complexity. The simulation also verifies the superiority of proposed 

PSO over the standard PSO algorithm and supports the idea that switching between different chaotic 

pseudorandom number generators for updating the velocity of particles in the PSO algorithm improves its 

performance and the optimization process. The results for different experiments are collected with different 

settings and results compared with other methods which shows that the proposed algorithm improves the results 

by considerable margin. 
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