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Abstract:-  In this paper we give some characterizations of the primary ideals in ternary semigroups. In this 

paper mainly we have to show that T be a ternary semigroup satisfying  0n

n

M   in which every ideal is a 

product of primaries. If T has exactly three primes different from M, then T is noetherian of dimension three. 
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I. INTRODUCTION AND PRELIMINARIES 
 Throughout T will denote a commutative, multiplicative ternarysemigroup with 0 and 1. Factorization 

theory, in one form or another, has been a topic of on going interest in algebra since the beginnings of the 

subject. In this paper we consider the implications of factorizations, of various types, of ideals as products of 

primary ideals. 

          By a prime ideal, we shall mean an ideal ( )P T  which has the property that if it contains the product of 

three elements then it must contain one of them.  The set M of all non units of T is a prime ideal, infact the 

unique maximal ideal of T.  By a primary ideal, we shall mean an ideal ( )Q T  which has the property that if 

it contains the product xyz of three elements and fails to contain x, y then it must contain a power of z.  Any 

power of the maximal ideal M is easily seen to be primary.  The radical of an ideal I, denoted  ,rad I is the 

set of elements having a power in I.  It is easy to see that an ideal P is prime if and only if whenever P contains 

the product of three ideals, it must contain one of them.  Similarly, an ideal Q is primary if and only if whenever 

Q contains the product ABC of three ideals and fails to contain A, B;  rad Q must contain C.  The radical of a 

primary ideal is prime, and any ideal having radical M is primary, as is easily seen. If Q is a primary ideal and 

 rad Q P , then will say that Q is P- primary or that Q is primary with associated prime P. We shall say 

that a semigroup has a primary decomposition theory if every ideal has a representation as a finite intersection 

of primary ideals. (i.e a primary decomposition).  Any primary decomposition can be refined to a normal 

decomposition (i.e one which is as short as possible and in which distinct primary terms have distinct radicals). 

If T is Noetherian then every primary ideal contains a power of its associated prime. We shall say that T has a 

strong primary decomposition theory if T has a primary decomposition and every primary contains 

a power of its radical. 

            By an irreducible ideal, we shall mean a non zero ideal which cannot be properly factored.  (i.e  A = 

BCD implies B = T or C = T or D = T ).  If A and B are subsets of T then we shall use A : B to denote the set of 

all elements x, y such that xyB A .   If A is an ideal of T, then A : B is an ideal of T.   If x is any element of T 

and A is an ideal of T, then        : ,A x A x x  as easily seen.  Hence a principal ideal is a factor of 

any ideal which it contains.  By a principally reduced ternary semigroup we shall mean a ternary semigroup T in 

which no principal ideal   0,x  is a proper factor of itself.  By a factor reduced ternary semigroup we shall 

mean a ternary semigroup in which no ideal 0A   is a proper factor of  

itself.             

            A ternary semigroup T is principally reduced if and only if    M x x implies  x = 0. 

 T is factor reduced if and only if MMA = A implies A = 0. 
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 We begin by considering what is easily the simplest possible setting for factoring as product of 

primaries, namely that in which every ideal is already primary. We note that semigroups in which every ideal is 

primary were considered by satyanarayana [6], but under different cancellative assumptions. 

  

Theorem 1:  Let T be a principally reduced ternary semigroup in which every ideal is primary. If P is prime 

different from M then P = 0.  Conversely, if T is a ternary semigroup in which M is the only non zero prime, 

then every ideal of T is primary. 

Proof: Assume P is a prime ideal different from M.  Choose x in P.  Then M (x) is primary.  If 0x  , then

  x M x , so           M rad M x rad x P  , a contradiction.  Hence  

x = 0, and M is the only non zero prime ideal of T. 

        It was shown in [6] that the radical of an ideal is the intersection of the primes containing it.   Hence, if M 

is the only non zero prime ideal of T, and if A is any non prime ideal of T, then M = rad (A), and therefore A is 

primary. 

 

Note:  If T satisfies a strong primary decomposition theory, then T is principally reduced if and only if

0n

n

M  .  If 0n

n

M  ,  then T is factor reduced. 

Proof: Assume T is principally reduced and
n

n

y M .  If Q is any term from a primary decomposition of 

 M y and y Q , then   M rad Q , so
ny M Q  , for some n is an odd positive integer.  Hence 

   . M y y  Since T is principally reduced, it follows that y = 0, and hence that 0n

n

M  since 

   y y M  implies     ny y M for all positive odd integer n, the converse is clear.  Since A = ABC 

implies  n nA ABC M  for all positive odd integer n, the last statement follows. 

          We now consider the case in which every ideal is a product of primaries.  Noetherian rings satisfying this 

condition have also attracted some interest as generalizations of Dedikind domains [1]. 

 

Theorem 2: Let T be a ternary semigroup satisfying 0n

n

M   in which every ideal is a product of primaries.  

Then T has at most three primes different from M, each of which is principal.  If 1P  is a principal prime and 0P  

is a prime properly contained in 1P , then 0 0P  .  If 1P , 2P  and 3P  are non comparable primes, then 

1 2 3M P P P   . 

Proof:  Let P be any prime different from 0 and M.  Then the quotient P MMP  is one-dimensional.  To see 

this, note that if I is any ideal strictly between MMP and P, then one of the primary factors of I, say Q, is 

contained in P.  since I is not contained in MMP, P is not a factor of Q, so Q is properly contained in P.  But 

then from MMP Q  we get   M rad Q P  ,  a contradiction.  On the other hand, MMP is properly 

contained in P by above note.  Hence P MMP  has dimension 1.  It now follows that if x is any element of 

P MMP , then necessarily   P x MMP  .  But then  [( ) ]n

n

P x PM   = ( ) nx PM   

= ( )x .   Hence, every prime different M is Principal.   

           If 0 1,P P  and 2P  are distinct principal primes with 0P contained in 1P  and 

0 0 1 2 0 1 1 2( : )P P P P P P PP     = 0 1 2P PP  from which it follows (above note) that 0 0P  . 

            Now assume that 1P , 2P  and 3P  are non comparable principal primes.   It is easily seen that

1 2 3( )P P P P    is another prime, and since 1P  is non zero, it follows that P = M.  If 0P  is a third 

principal prime, then since 0P  is principal and contained in 1 2 3M P P P   , it follows that 0P   is contained 

in either  1P  or 2P  or 3P  .   But then 0 0P  .   Hence T has atmost three primes different from M and they are 

all principal. 
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            In the special case of Theorem.2 where T has exactly three primes different from M, there is more to be 

said. 

 

Theorem 3:  Let T be a ternary semigroup satisfying 0n

n

M  in which every ideal is a product of primaries.  

If T has exactly three primes different from M, then T is Noetherian of (Krull) dimension 3. 

Proof:  Assume that T has primes, 0P , 1P , 2P  and 3P  different from M.  By Theorem.2, we may assume that 

0 0P  and that 1 2 3M P P P   .  It is clear that T has (Krull) dimension 3. Since 10 < ;P M  0 < 2P < M 

and 0 < 3P < M are the only maximal prime chains. 

           There are a variety of ways to see that T is Noetherian we choose one which is fairly unique to this 

situation: 

            Let E be a maximal non finitely generated ideal.  Since the product of finitely generated ideals is finitely 

generated, and since E is the product of primary ideals, it must be that E is itself primary.  Hence E is primary 

for one of 1P , 2P  , 3P  and M.  If E is primary for, say, 1P  then we can choose n so that E is contained in 1

nP  

but not in 
2

1

nP 
.  Then 1 1 1( : ) ,n n nE E P E P P    with 1: nE P  not contained in 1P .  Since

 
E is primary it 

follows that 1

nP  is contained in E, and hence that 1P  = E.  But then  

1 2 3 1 1 2 2 3 3( ) ( ) ( ) ( : ) ( : ) ( : )E E M E P E P E P E P P E P P E P P            and of

1 2: , :E P E P and 3:E P  must be greater than E, and hence finitely generated, since E has radical M.  But then 

E is again finitely generated.  Therefore every ideal of T is finitely generated and T is Noetherian. 

 

Note 2:  In the final paragraph of the proof of Theorem 3 it is shown that if E is primary ideal with a principal 

associated prime, then E is a power of its associated prime and hence principal.  It is easy to see that if 

1 ... nB R R R     is a normal decomposition in which iR are principal and have non comparable 

associated primes, then 1 1[( : ) ... ] .n n nA R R R R R      It follows that if T is a principally reduced 

ternary semigroup satisfying a strong primary decomposition theory in which every prime ideal P M  is 

principal, then every ideal is a product of primaries. 

            We now proceed to consider situations in which we have some sort of uniqueness of factorization. 

              The case in which every nonzero ideal of T has a unique factorization as a product of primaries is 

trivial: 
3M automatically has three different factorizations, since it is itself primary, so it follows that

3 0M  .  

Hence it is clear that the most we should ask for is that every nonzero ideal be a unique product of irreducible 

primaries.  On the other hand, it is easily seen that every ideal A of such a ternary semigroup satisfies the 

cancellative property AAB = AAC implies B = C.  Ternary semigroup satisfying this condition are Noetherian 

with 0n

n

M    [6].  We obtain a characterization under weaker hypothesis. 

 

Theorem 4:  Let T be a ternary semigroup satisfying 0n

n

M   in which every M - primary ideal contains a 

power of its radical.  Assume that the prime ideals P of T satisfy the property  0PPA PPB   implies A = B, 

for all ideals A and B. Then either 
3 0M  or T is Noetherian, every ideal of T is principal and every nonzero 

ideal of T is power of M. 

Proof:  We observe that if P is prime and  0PPA PPB   then ( )  0PPB PP A B   , so B A B 

and hence A B . 

                 First consider the case in which T has dimension 0 and
3 0M  . Choose 

3\y M M  such that

( ) 0M y  , this is clearly possible since M is generated by the elements of
3\M M .  Since the radical of  y

is the intersection of the primes containing it,  y  has radical M, and hence is M-primary.  Choose n least such 

that 
nM  is contained in  y .  Then ( ) ( ( ))( )n n nM M y M y y     and 

nM  is not contained in
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( )M y , so : ( )nM y T . It follows that ( )nM y .  By the choice of
3\y M M , we get that n = 0 and 

that ( )M y . 

             Now assume T has dimension greater than 0.  Let E be the family of all subsets B of
3\M M such that 

,x y B and (x) = (y) implies x = y.  Let G be a maximal element of E.  If z is any element of 
3\M M then 

z G implies (z) = (g), for some element g G . Since 
3 3\  M M M M  and 0n

n

M  , it follows 

that the ideal generated by G in M. 

              Fix g G  and let \{ }.gH H G g    Let gJ be the ideal generated by H. If ( )g

h G

g J h


  , 

then ( )g h  for some h H .  But then      g h or      g M h , both of which contradict the choice 

of G. Hence gJ  is properly contained in M. 

             Let P be a prime ideal minimal over gJ . Since, ( )gM J g   we have 

( ( )) ( : ( ))( )g gP J P g J P g g     .   Hence either P = gJ or P = M.   If P = M, choose 

n least such that
n

gM J .  Since ( ( )) ( ( )) ( : ( ))( )n n n n

h H h H h H

M M h M h M h h
  

       , and 

since 
nM  is not contained in gMJ , it follows that : ( )nM h T  for some h H .  But then 

3\h M M  

implies n = 1, a contradiction.  Hence P = gJ . 

               From ( ) ( )gM J g P g    , we get 
3 3 3 3( ( )) ( ( )) 0M P g M P g      where

3 3 3 3 3 3 3( ) (( ) ) ( ( )) ( ) (( ) ).P g g P P P g P P g P P g P            Since 
3( )g g P  , it 

follows that 
3(( ) ) 0P g P  .  But then 

3 3 0gP J  . 

                 Fix \{ }h G g  since g  is an arbitrary element of G, it follows that hJ  is also 

prime and that
3 0.hJ    But then h gg J J  , a contradiction.  It is now clear that 

G has only one element g, and    .M g  

        Hence M is principal in either case. 

        Let A be any nonzero ideal of T.  Choose n least such that A is not contained in 
2nM 

.  Then

( : )n n nA A M A M M   , so : nA M T  and
nA M .  Hence every ideal of T is principal and every 

nonzero ideal is a power of M. 
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