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Abstract:- The mixed-integer nonlinear programming problems addressed in this paper are large-scale, highly 
combinatorial and highly nonlinear problems. They have a structure characterized bya subset of variables restricted to 

assume discrete values, which are linear and separable from the continuous variables. The strategy of releasing 

nonbasic variables from their bounds, combined with the “active constraint” method, has been developed. This 

strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points. 

Succesful implementation of these algorithms was achieved on various test problems. 
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I. INTRODUCTION  

 
Mixed Integer Nonlinear Programming (MINLP) refers to mathematical programming with continuous 

and discrete variables and nonlinearities in the objective function and constraints. The special class of Mixed-

Integer nonlinear programming problem which is addressed in this paper is to assume discrete values, which are 

linear and separable from the continuous variables. 
 

The  basic form of an MINLP problem when represented mathematically can be written as follows: 
 

(1) 
 

(2) 
 

(3) 

 
where f(·), g(·) are convex, differentiable functions, J is the index set of inequalities, and x and y are the 
continuous and discrete variables, respectively. The set X is assumed to be a convex compact set, e.g. 

X =

 {x | x R

n
, Dx < d, x

L
 < x <  x

U
 }; the discrete set Y corresponds to a polyhedral set of integer points, 

 m  m 
Y = {y | yZ , Ay < a} , and in most real world problems is restricted to 0-1 values,  y {0,1}  . 
 

There are various applications for the MINLP model, including the process industry and the financial 

engineering, management science and operations research sectors. It includes problems in process flow sheets, 

portfolio selection, batch processing in chemical engineering (consisting of mixing, reaction, and centrifuge 

separation), and optimal design of gas or water transmission networks. Other areas of interest include the 

automobile, aircraft, and VLSI manufacturing areas. An impressive collection of MINLP applications can be 

found in [1] and [2]. The needs in such diverse areas have motivated research and development in MINLP solver 

technology, particularly in algorithms for handling large-scale, highly combinatorial and highly nonlinear 

problems. 
 

Methods for solving MINLPs include innovative approaches and related techniques taken and extended 

from MIP, such as, Outer Approximation (OA) methods [2,3,4], Branch-and-Bound (B&B) [5,6,7], Extended 

Cutting Plane methods [8], and Generalized Bender’s Decomposition (GBD) [9] for solving MINLPs have been 

discussed in the literature since the early 1980’s. These approaches generally rely on the successive solutions of 

closely related NLP problems. For example, B&B starts out forming a pure continuous NLP problem by 

dropping the integrality requirements of the discrete variables (often called the relaxed MINLP or RMINLP). 
 
www.irjes.com 16 | Page 



A Neighbourhood  Search Approach For Solving Large Scale Mixed-Integer Non Linear… 

 
Moreover, each node of the emerging B&B tree represents a solution of the RMINLP with adjusted bounds on 
the discrete variables. 
 

Heuristic approaches to solving MINLPs include Variable Neighbourhood Search [10], automatically 

tuned variable fixing strategies [11], Local Branching [12], feasible neighbourhood search [12], Feasibility 

Pump [13,14,15], heuristics based on Iterative Rounding [16]. Recently [17] propose a MINLP heuristic called 

the Relaxed-Exact-Continuous-Integer Problem Exploration (RECIPE) algorithm. The algorithm puts together a 

global search phase based on Variable Neighbourhood Search [10] and a local search phase based on a MINLP 

heuristic. In heuristic approaches, however, one of the main algorithmic difficulties connected to MINLPs is to 

find a feasible solution. From the worst-case complexity point of view, finding a feasible MINLP solution is as 

hard as finding a feasible Nonlinear Programming solution, which is NP-hard [12]. 
 

Due to the fact that the functions in MINLPs are not smooth, therefore in this paper we use a direct 

search method, known as unconstrained optimization techniques that do not explicitly use derivatives. More 

information regarding to direct search method in optimization can be found in [8]. 
 

In this paper we address a strategy of releasing nonbasic variables from their bounds, combined with 

the “active constrained” method and the notion of superbasic for efficiently tackling a particular class of MINLP 

problems. 
 

The rest of this paper is organized as follows. In Section 2 we give a brief notion of neighbourhood 

search. The basic approach of the proposed method is presented in Section 3. How to derive the proposed 

method is given in Section 4. The algorithm is presented in Section 5. Section 6 addresses a computational 

experience. The conclusions can be found in Section 7. 

 

II. NEIGHBOURHOOD SEARCH  
 

It should be noted that, generally, in integer programming the reduced gradient vector, which is 

normally used to detect an optimality condition, is not available, even though the problems are convex. Thus we 

need to impose a certain condition for the local testing search procedure in order to assure that we have obtained 

the “best” suboptimal integer feasible solution. 
 

Scarf [18] has proposed a quantity test to replace the pricing test for optimality in the integer 

programming problem. The test is conducted by a search through the neighbours of a proposed feasible point to 

see whether a nearby point is also feasible and yields an improvement to the objective function.  
Let  be an integer point belongs to a finite set of neighbourhood  We define a 

neighbourhood system associated with  that is, if such an integer point satisfies the following two 

requirements 

 
1.  
2. 

 
With respect to the neighbourhood system mentioned above, the proposed integerizing strategy can be 

described as follows.  
Given a non-integer component,  of an optimal vector ,  The adjacent points of  being 

considered are  If one of these points satisfies the constraints and yields a minimum 

deterioration of the optimal objective value we move to another component, if not we have integer-feasible 

solution.  
Let  be the integer feasible point which satisfies the above conditions. We could then say if  

implies that the point  is either infeasible or yields an inferior value to the objective function obtained with 

respect to . In this case  is said to be an “optimal” integer feasible solution to the 
 
integer programming problem. Obviously, in our case, a neigbourhood search is conducted through proposed 

feasible points such that the integer feasible solution would be at the least distance from the optimal continuous 

solution. 
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III. THE BASIC APPROACH  
 

Before we proceed to the case of MINLP problems, it is worthwhile to discuss the basic strategy of 
process for linear case, i.e., Mixed Integer Linear Programming (MILP) problems.  
Consider a MILP problem with the following form 
 

(4) 
 

(5) 
 

(6) 
 

(7) 
 
 

A component of the optimal basic feasible vector , to MILP solved as continuous can be written  
as 
 

 (8) 
 

Note that, this expression can be found in the final tableau of Simplex procedure. If  is an integer variable 

and we assume that  is not an integer, the partitioning of  into the integer and fractional components is that 

given 
 

(9) 
 
suppose we wish to increase  to its nearest integer, . Based on the idea of suboptimal solutions 

we may elevate a particular nonbasic variable, say , above its bound of zero, provided , as one of the 

element of the vector , is negative. Let  be amount of movement of the non variable , such that the 

numerical value of scalar  is integer. Referring to Eqn. (8),  can then be expressed as 
 

(10) 

 
while the remaining nonbasic stay at zero. It can be 

seen that after substituting (9) into (10) for  and taking into account the partitioning of  given in (10),  
we obtain  

(11) 
 
 

Thus,  is now an integer. 
 

It is now clear that a nonbasic variable plays an important role to integerize the corresponding basic 

variable. Therefore, the following result is necessary in order to confirm that must be a non-integer variable to 

work with in integerizing process. 
 
 

Theorem 1. Suppose the MILP problem (4)-  has an optimal solution, then some of the nonbasic variables. 

, must be non-integer variables. 
 
Proof: 
 
Solving problem as a continuous of slack variables (which are non-integer, except in the case of equality 

constraint). If we assume that the vector of basic variables xB consists of all the slack variables then all integer 

variables would be in the nonbasic vector  and therefore integer valued. 
 
 
 
 
www.irjes.com 18 | Page 



A Neighbourhood  Search Approach For Solving Large Scale Mixed-Integer Non Linear… 

 
IV. DERIVATION OF THE METHOD  

It is clear that the other components, , of vector  will also be affected as the numerical value 

of the scalar  increases to . Consequently, if some element of vector , i.e.,  for , are 

positive, then the corresponding element of  will decrease, and eventually may pass through zero. However, 

any component of vector x must not go below zero due to the non-negativity restriction. Therefore, a formula, 

called the minimum ratio test is needed in order to see what is the maximum movement of the nonbasic   
such that all components of x remain feasible. This ratio test would include two cases. 
 

1. A basic variable   decreases to zero (lower bound) first.   

2. The basic variable,   increases to an integer.  
 

Specifically, corresponding to each of these two cases above, one would compute 
 

(12) 
 

(13) 
 

How far one can release the nonbasic  from its bound of zero, such that vector  remains feasible, will 

depend on the ratio test  given below 
 

(14) 
 
 

Obviously, if , one of the basic variable  will hit the lower bound before  becomes integer. 

If , the numerical value of the basic variable  will be integer and feasibility is still maintained. 

Analogously, we would be able to reduce the numerical value of the basic variable  to its closest integer 

. In this case the amount of movement of a particular nonbasic variable, , corresponding to any 

positive element of vector , is given by 
 

(15) 

 

In order to maintain the feasibility, the ratio test 
*
 is still needed.  

Consider the movement of a particular nonbasic variable, , as expressed in Eqns.(10) and (15).The only factor 

that one needs to calculate is the corresponding element of vector . A vector  can be expressed as 

                                   (16)  

Therefore, in order to get a particular element of vector  we should be able to distinguish the corresponding 

column of matrix . Suppose we need the value of element , letting  be the -th column vector of 

, we then have 
 

(17) 
 
Subsequently, the numerical value of kj* can be obtained from 
 

(18) 
 
in Linear Programming (LP) terminology the operation conducted in Eqns. (17) and (18) is called the pricing 

operation. The vector of reduced costs  is used to measure the deterioration of the objective function value 
 
caused by releasing a nonbasic variable from its bound. Consequently, in deciding which nonbasic should be 

released in the integerizing process, the vector  must be taken into account, such that deterioration is 
 
minimized. Recall that the minimum continuous solution provides a lower bound to any integer-feasible 
solution. Nevertheless, the amount of movement of particular nonbasic variable as given in Eqns. (10) or (15), 
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depends in some way on the corresponding element of vector . Therefore it can be observed that the 

deterioration of the objective function value due to releasing a nonbasic variable  so as to integerize a 

basic variable  may be measured by the ratio 

 
(19) 

 

where  means the absolute value of scalar a. 
 

In order to minimize the detoriation of the optimal continuous solution we then use the following 
strategy for deciding which nonbasic variable may be increased from its bound of zero, that is, 
 

(20) 

 

From the “active constraint” strategy and the partitioning of the constraints corresponding to basic , 

superbasic  and nonbasic  variables, we can write 

 
 (21) 

or  

 (22) 

 (23) 

The basis matrix   is assumed to be square and nonsingular, we get  

 (24) 

Where  

 (25) 

 (26) 

α (27) 
 

 
Expression (23) indicates that the nonbasic variables are being held equal to their bound. It is evident 

through the “nearly” basic expression of Eqn. (24), the integerizing strategy discussed in the previous section, 

designed for MILP problem can be implemented. Particularly, we would be able to release a nonbasic variable 

from its bound, Eqn.(23) and exchange it with a corresponding basic variable in the integerizing process, 

although the solution would be degenerate. Furthermore, the Theorem (1) above can also be extended for 

MINLP problem. 
 
Theorem 2. Suppose the MINLP problem has a bounded optimal continuous solution, then we can always get a 

non-integer  in the optimum basic variable vector. 
 
Proof. 
 
1. If these variables are nonbasic, they will be at their bound. Therefore they have integer value.  
 

2. If a   is superbasic, it is possible to make   basic and bring in a nonbasic at its bound to replace it in the 

superbasic.  
 

However, the ratio test expressed in (14) cannot be used as a tool to guarantee that the integer solution 
found still remains in the feasible region. 
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4.1 Pivoting  

Currently, we are in a position where particular basic variable,   is being integerized, thereby a   

corresponding nonbasic variable, , is being released from its bound of zero. Suppose the maximum 

movement of  satisfies 
 

(28) 
 

such that  is integer valued. To exploit the manner of changing the basis in linear programming, we would be 

able to move  into  (to replace ) and integer-valued  into S in order to maintain the integer 
 
solution. We now have a degenerate solution since a basic variable is at its bound. The integerizing process 

continues with a new set of . In this case, eventually we may end up with all of the integer variables being 

superbasic. 

 
Theorem 3. A suboptimal solution exists to the MILP and MINLP problem in which all of the integer variables 

are superbasic. 

 
Proof.  
1. If all of the integer variables are in N, then they will be at bound.  
 
2. If an integer variable is basic it is possible to either  
 

 interchange it with a superbasic continuous variable, or 


 make this integer variable superbasic and bring in a nonbasic at its bound to replace it in the basis which 
gives a degenerate solution. 

 
The other case which can happen is that a different basic variabels  may hit its bound before  

becomes integer. Or in other words, we are in a situation where 
 

(29) 
 

In this case we move the basic variable  into  and its position in the basic variable vector would 

be replaced by nonbasic . Note that  is still a non-integer basic variable with a new value. 

 
V. THE ALGORITHM  

 
After solving the relaxed problem, the procedure for searching a suboptimal but integer-feasible 

solution from an optimal continuous solution can be described as follows. 
 
Let 
 

(30) 
 
be the (continuous) solution of the relaxed problem,  is the integer component of non-integer variable  and 

 is the fractional component. 
 
Stage 1. 
 

Step 1.  Get row  the smallest integer infeasibility, such that 
 
Step 2.  Do a pricing operation 
 
 

Step 3.  Calculate   
With  corresponds to 

 
(31) 
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Calculate the maximum movement of nonbasic j at lower bound and upper bound  
Otherwise go to next non-integer nonbasic or superbasic  (if available). Eventually the column  is to 

be increased form LB or decreased from UB. If none go to next .  
Step 4.   

 Solve for 

Step 5. Do ratio test for the basic variables in order to stay feasible due to the releasing of nonbasic    from its 

 bounds.  

Step 6. Exchange basis 

Step 7. If row go to Stage 2, otherwise 

 Repeat from step 1. 
Stage 2. Do integer lines search to improve the integer feasible solution 

 VI. COMPUTATIONAL EXPERIENCE 1: A PROCESS SYSTEM 

  SYNTHESIS PROBLEM  
6.1 Mathematical Statement the Problem.   

This synthesis problem is the one of simultaneously determining the optimal structural and operating  
 
parameters for a process so as to satisfy a given design specification. The decision variables are defined as 
follows. 
 

is a binary variable which is associated with each process unit (piece of equipment) to denote its potential 

existence in the final optimal configuration, and 
 

 are the continuous variables which represent process parameters such as flow rates of materials. 

Generally, the objective is to minimize the annual costs, including both investment and operation costs. 
 
Minimize 
 
 
 
 
 

 
Subject to  

(33) 
 

(34) 
 

(35) 
 

(36) 
 

(37) 
 

(38) 
 

(39) 
 

(40) 
 

(41) 
 

(42) 
 

(43) 
 

(44) 
 

(45) 
 

(46) 
 

(47) 

(48) 
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 (49) 

 (50) 

 (51) 

 (52) 

 (53) 

 (54) 

 (55) 

and integer for (56) 

 (57) 

 (58) 

 (59) 
 

The above formulation contains 8 binary variables, 9 bounded continuous variables, 23 inequality 
constraints. Nonlinearities appear in the objective function and in four inequalities. 

 
6.2 Discussion of the Results   

We solved this problem using PC with processor Intel(R) Core (TM) i5-2300 CPU @ 280 GHZ and  
 
RAM 4.00GB. The continuous optimal solution was obtained by using NLP software. Only one binary variable 

is integer-valued (at its lower bound) in the continuous solution. A binary variable  is in superbasic set with 

non integer value. We then moved this variable to its closest integer by using truncation strategy and kept it 

superbasic. We must check the feasibility of the corresponding basic variables due to this movement. We 

integerized the remaining non-integer binary variables by using our proposed integerizing strategy. Both the 

continuous and the integer results of the synthesis problem can be seen in Table 1. 

 
Table 1. The Results of the Synthesis Problem.  

 

Variable 
 

Activity in 
 

Activity after 
  

    
 

        

       
 

   Cont.Soln.  integ. Process  
 

      

  1.90293 0.0  
 

     
 

  2.0 2.0  
 

     
 

  0.52752 0.46784  
 

     
 

  0.65940 0.58480  
 

     
 

  2.0 2.0  
 

     
 

  1.08333 0.0  
 

     
 

  0.65940 0.0  
 

     
 

  0.41111 0.26667  
 

     
 

  0.0 0.58480  
 

     
 

  0.57055 0.0  
 

     
 

  0.42945 1.0  
 

     
 

  0.06594 0.0  
 

     
 

  0.30833 1.0  
 

     
 

  0.0 0.0  
 

     
 

  0.2 1.0  
 

     
 

  0.10833 0.0  
 

     
 

  0.11869 1.0  
 

     
 

 Obj.value(F) 15.08219 68.00974  
 

        

Our objective result is in agreement with the result obtained by [5]. 
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VII. CONCLUSIONS 

 
This paper has presented a direct search method for achieving integer-feasibility for a class of mixed-

integer nonlinear programming problems in a relatively short time. The direct search approach used the strategy 

of releasing nonbasic variable from their bounds, combined with the “active constraint” method and the notion 

of superbasic. After solving a problem by ignoring the integrality requirements, this strategy is used to force the 

appropriate non-integer basic variables to move to their neighborhoods integer points. 
 

A study of the criteria for choosing a nonbasic variable to work with in the integerizing strategy has 

also been made. The number of integerizing steps would be finite if the number of integer variables contained in 

the problem is finite. However, it should be noted that the computational time for the integerizing process does 

not necessarily depend on the number of integer variables, since many of the integer variables may have an 

integer value at the continuous optimal solution. 
 

The new direct search method has been shown to be successful on a range of problems, while not 
always able to achieve global optimality. In a number of cases to obtain the suboptimal point is acceptable, since 
the exponential complexity of the combinatorial problems in general precludes branch-and-bound, except on 
small to medium problems.  

Computational testing of the procedure presented this paper has demonstrated that it is a viable 
approach for large problems. 
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