
International Refereed Journal of Engineering and Science (IRJES)

ISSN (Online) 2319-183X, (Print) 2319-1821

Volume 13, Issue 5 (Sep.-Oct. 2024), PP. 77-95

www.irjes.com 77 | Page

Performance of Input Image Size for Convolutional

Neural Network based Head Detection

Panca Mudjirahardjo1), Aqil Gama Rahmansyah2), Alya Shafa Dianti3)
1,2)Dept. of Electrical Engineering, Faculty of Engineering, Universitas Brawijaya, Indonesia.

3)Dept. of Statistics, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Indonesia.

panca@ub.ac.id

Abstract

In this research, we study and evaluate the performance of CNN based head detection with various input image

size. We evaluate grayscale and saliency map format as inputs to our CNN model. We use INRIA dataset for

training and testing data. For training data, we use image size of 30×20 pixels, 60×40 pixels and 90×60 pixels.

We evaluate the performance of head detection using quantity accuracy, precision, recall and F1-score. The

experimental result shows grayscale image with size of 30×20 pixels and adam optimizer has high F1-score.

However, the F1-score of the test model did not show a significant difference. The experiment is conducted using

programming language python and openCV library.

Keywords: saliency map, CNN, head detection, optimizer, input image size, F1-score.

-- -------

Date of Submission: 06-10-2024 Date of acceptance: 18-10-2024

--- ----------

I. Introduction

Head detection is one of task in computer vision. The objective of head detection is for a smart monitoring

system, both indoors and outdoors. Head detection and orientation estimation are a vital component in the

intention recognition of pedestrians. This research still has challenges, due to the complexity of human poses,

background, lighting conditions, occlusions and camera view-points. Head detection may be more demanding

than face recognition and pedestrian detection in the scenarios where a face turns away or body parts are occluded

in the view of a sensor, but locating people is needed.

Bin Li et.al [1] captured the scene and detected human head from top view. They proposed a novel people

counting method based on head detection and tracking to evaluate the number of people who move under an over-

head camera. There were four main parts in the proposed method: foreground extraction, head detection, head

tracking, and crossing-line judgment. The proposed method first utilized an effective foreground extraction

method to obtain foreground regions of moving people, and some morphological operations were employed to

optimize the foreground regions. Then it exploited a LBP feature based Adaboost classifier for head detection in

the optimized foreground regions. After head detection was performed, the candidate head object was tracked by

a local head tracking method based on Meanshift algorithm. Based on head tracking, the method finally used

crossing-line judgment to determine whether the candidate head object will be counted or not. Experiments show

that their method can obtain promising people counting accuracy about 96% and acceptable computation speed

under different circumstances.

Eike Rehder, et.al. [2] proposed a novel framework to detect highly occluded pedestrians and estimate

their head orientation. Detection was performed for pedestrian’s heads only. For this they employed a part-based

classifier with HOG/SVM combinations. Head orientations were estimated using discrete orientation classifiers

and LBP features. Results were improved by leveraging orientation estimation for head and torso as well as motion

information. The orientation estimation was integrated over time using a Hidden Markov Model. From the discrete

model they obtained a continuous head orientation. They evaluated their approach on image sequences with

ground truth orientation measurements.

Tuan-Hung Vu, et.al. [3] focused on detecting human heads in natural scenes. Starting from the recent

local R-CNN object detector, they extended it with two types of contextual cues. First, they leveraged person-

scene relations and proposed a Global CNN model trained to predict positions and scales of heads directly from

the full image. Second, they explicitly modeled pairwise relations among objects and trained a Pairwise CNN

model using a structured-output surrogate loss. The Local, Global and Pairwise models were combined into a joint

CNN framework. To train and test their full model, they introduced a large dataset composed of 369, 846 human

heads annotated in 224, 740 movie frames. They evaluated their method and demonstrated improvements of

person head detection against several recent baselines in three datasets.

Siyuan Chen, et.al. [4] introduced an efficient head detection approach for single depth images at low

computational expense. First, a novel head descriptor was developed and used to classify pixels as head or non-

mailto:panca@ub.ac.id

Performance of Input Image Size for Convolutional Neural Network based Head Detection

www.irjes.com 78 | Page

head. They used depth values to guide each window size, to eliminate false positives of head centers, and to cluster

head pixels, which significantly reduced the computation costs of searching for appropriate parameters. High head

detection performance were achieved in experiments – 90% accuracy for our dataset containing heads with

different body postures, head poses, and distances to a Kinect2 sensor, and above 70% precision on a public

dataset composed of a few daily activities, which is higher than using a head-shoulder detector with HOG feature

for depth images.

Dexhi Peng, et.al. [5] presented a method that can accurately detect heads especially small heads under

the indoor scene. To achieve this, they proposed a novel method, Feature Refine Net (FRN), and a cascaded multi-

scale architecture. FRN exploits the multi-scale hierarchical features created by deep convolutional neural

networks. The proposed channel weighting method enables FRN to make use of features alternatively and

effectively. To improve the performance of small head detection, they proposed a cascaded multi-scale

architecture which has two detectors. One called global detector was responsible for detecting large objects and

acquiring the global distribution information. The other called local detector was designed for small objects

detection and made use of the information provided by global detector. Due to the lack of head detection datasets,

they had collected and labeled a new large dataset named SCUT-HEAD which includes 4405 images with 111251

heads annotated. Experiments show that their method had achieved state-of-the-art performance on SCUT-HEAD.

Muhammad Saqib, et.al. [6] detected human heads in natural scenes acquired from a publicly available

dataset of Hollywood movies. In this work, we had used state-of-the-art object detectors based on deep

convolutional neural networks. These object detectors include region-based convolutional neural networks using

region proposals for detections. Also, object detectors that detect objects in the single-shot by looking at the image

only once for detections. They had used transfer learning for fine-tuning the network already trained on a massive

amount of data. During the fine-tuning process, the models having high mean Average Precision (mAP) were

used for evaluation of the test dataset.

Yijing Wang, et.al. [7] developed a simple effective proposal-based human head and body detection

framework in crowded scenes. Human heads were too small for detectors to locate and human bodies were

frequently occluded in the crowds, which required more robust location capability of detectors. To tackle the

issues above, they proposed a head-body correlation module to utilize the location prior knowledge of human

body and human head. Compared with Faster R-CNN, their approach can improve the Average Precision (AP)

gains for human body and head detection by 2.15% and 2.52% on the challenging CrowdHuman dataset.

Xiyang Dai, et.al. [8] presented a novel dynamic head framework to unify object detection heads with

attentions. By coherently combining multiple self-attention mechanisms between feature levels for scale

awareness, among spatial locations for spatial-awareness, and within output channels for task-awareness, the

proposed approach significantly improved the representation ability of object detection heads without any

computational overhead. Further experiments demonstrated that the effectiveness and efficiency of the proposed

dynamic head on the COCO benchmark. With a standard ResNeXt-101- DCN backbone, they largely improved

the performance over popular object detectors and achieved a new state-of-the-art at 54.0 AP. Furthermore, with

latest transformer backbone and extra data, they can push current best COCO result to a new record at 60.6 AP

II. The Proposed Study

In this section, we briefly explain the proposed study to evaluate the performance of various input image

size for convolutional neural network. We evaluate grayscale and saliency map as an input image. The study

method is shown in Figure 1. Our architecture in this study use the architecture in Figure 2 for image size of 30×20

pixels. The architecture has been evaluated in [11-12]. The architecture in Figure 3 is for image size of 60×40

pixels. And the architecture in Figure 4 is for image size of 90×60 pixels.

Figure 1. The proposed method of this study

Grayscale

Input image in

RGB color

Detection result CNN model

Saliency map

30 × 20

90 × 60

60 × 40

30 × 20

90 × 60

60 × 40

Detection result CNN model

Detection result CNN model

Detection result CNN model

Detection result CNN model

Detection result CNN model

Performance of Input Image Size for Convolutional Neural Network based Head Detection

www.irjes.com 79 | Page

Figure 2. The CNN model we used for image size of 30×20 pixels [12]

Figure 3. The CNN model we used for image size of 60×40 pixels

Figure 4. The CNN model we used for image size of 90×60 pixels

III. Saliency map

Saliency Map is an image in which the brightness of a pixel represents how salient the pixel is i.e brightness of

a pixel is directly proportional to its saliency. It is generally a grayscale image. Saliency maps are also called

as a heat map where hotness refers to those regions of the image which have a big impact on predicting the

class which the object belongs to [14].

The purpose of the saliency map is to find the regions which are prominent or noticeable at every location in

the visual field and to guide the selection of attended locations, based on the spatial distribution of saliency.

It is used in various Visual Attention models.

Here is an example, the picture shown in the right is the saliency map of the left one which shows the regions

which are more attentive part to CNN.

Figure 5. The result of saliency map [14]

In General, we take an image as input and we use the whole image to predict the output. So if we have

an image of a bird and we predict bird but not the whole input is actually important and not the whole input

contributes equally to predict the output. So if we have a really big image where only a few pixels the class we

want to predict so computing the whole input is not a good idea i.e why we use a saliency map to highlight the

important regions of the image and processed only the highlighted parts. It will actually help to relieve the

computational burden.

Performance of Input Image Size for Convolutional Neural Network based Head Detection

www.irjes.com 80 | Page

It is created by using the following Steps.

 We have an image and the basic features like colour, orientation, the intensity is extracted from the

image.

 These processed images are used to create Gaussian pyramids to create features Map.

 Saliency map is created by taking the mean of all the feature maps.

Program-1: To create a saliency map.

import cv2 as cv

img = cv.imread(‘image.jpg’)

-- SALIENCY detection --

sal= cv.saliency.StaticSaliencyFineGrained_create()

(success, saliencyMap) = sal.computeSaliency(img)

saliencyMap = (saliencyMap * 255).astype("uint8")

IV. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a type of artificial neural network designed primarily for processing

structured grid data, such as images. Here's a brief overview of its key components and how it works:

Figure 6. The simple CNN

Key Components

1. Convolutional Layers: These layers apply convolutional filters (kernels) to the input data. Each filter detects

specific features such as edges or textures. As the filter slides over the input image, it produces feature maps that

represent the presence of these features.

2. Activation Functions: After convolution, activation functions like ReLU (Rectified Linear Unit) introduce non-

linearity to the model, helping it learn more complex patterns.

3. Pooling Layers: These layers reduce the spatial dimensions (width and height) of the feature maps while

retaining the most important information. Common pooling operations include max pooling (taking the maximum

value in a region) and average pooling.

4. Fully Connected Layers: After several convolutional and pooling layers, the network typically includes one or

more fully connected layers that perform classification or regression based on the extracted features.

5. Dropout Layers: To prevent overfitting, dropout layers randomly "drop" (set to zero) a fraction of the neurons

during training, which helps the network generalize better to new, unseen data.

How It Works

1. Feature Extraction: CNNs automatically learn and extract features from the input data. For an image, this means

learning to detect edges, textures, and more complex structures as you go deeper into the network.

2. Hierarchical Learning: Lower layers in the network might learn simple features like edges, while higher layers

combine these features to detect more complex structures, such as shapes or objects.

3. Classification/Regression: After extracting features, CNNs use fully connected layers to classify the image into

categories or predict values if used for regression tasks.

Applications

CNNs are widely used in various fields:

- Image Recognition: Identifying objects, people, or scenes in images.

- Object Detection: Locating objects within an image and classifying them.

- Semantic Segmentation: Assigning a class to each pixel in an image.

- Video Analysis: Recognizing actions or events in video frames.

- Medical Imaging: Analyzing medical scans for disease detection or diagnosis.

Performance of Input Image Size for Convolutional Neural Network based Head Detection

www.irjes.com 81 | Page

V. Training phase
The training phase in machine learning is a crucial part of developing a model that can make accurate predictions

or decisions based on data. Here's a detailed look at what happens during the training phase:

Steps in the Training Phase

1. Data Preparation

- Data Collection: Gather the dataset that will be used for training. This could be from various sources like

databases, web scraping, or existing datasets.

- Data Cleaning: Handle missing values, remove duplicates, and correct errors to ensure the data is of high quality.

- Data Splitting: Divide the dataset into training, validation, and test sets. Typically, the training set is used to train

the model, the validation set is used to tune hyperparameters, and the test set is used to evaluate the model's

performance.

2. Model Initialization

- Choosing a Model: Select an appropriate model or algorithm based on the problem type (e.g., linear regression,

decision tree, neural network).

- Initializing Parameters: Set initial values for the model's parameters. For complex models like neural networks,

these are often initialized randomly.

3. Forward Pass

- Input Data: Feed a batch of training data into the model.

- Prediction: The model processes the input data through its layers (in the case of neural networks) and generates

predictions or outputs.

4. Loss Calculation

- Loss Function: Compute the loss (or error) by comparing the model's predictions with the actual target values

using a loss function (e.g., mean squared error, cross-entropy loss).

- Objective: The goal is to minimize this loss function.

5. Backward Pass (Backpropagation in Neural Networks)

- Gradient Calculation: Calculate the gradients of the loss function with respect to each model parameter using

techniques like gradient descent.

- Parameter Update: Adjust the model parameters based on the gradients to reduce the loss. This involves using

an optimizer (e.g., SGD, Adam) to apply updates.

6. Iteration

- Epochs: Repeat the forward pass, loss calculation, and backward pass for multiple epochs (iterations over the

entire training dataset).

- Mini-batch Processing: For large datasets, data is often processed in smaller mini-batches rather than all at once.

7. Validation

- Hyperparameter Tuning: Use the validation set to tune hyperparameters (e.g., learning rate, number of layers)

and make adjustments to improve performance.

- Model Evaluation: Periodically evaluate the model on the validation set to monitor its performance and ensure

it is not overfitting.

8. Regularization

- Techniques: Apply regularization techniques (e.g., dropout, L2 regularization) to prevent overfitting and

improve generalization.

- Early Stopping: Monitor validation performance and stop training if performance on the validation set starts to

degrade.

9. Model Saving

- Checkpointing: Save the model parameters and state at different points during training, especially after

significant improvements.

- Best Model: Save the best performing model based on validation metrics.

Key Concepts

- Overfitting: The model performs well on training data but poorly on validation/test data. This often means the

model has learned noise in the training data.

- Underfitting: The model performs poorly on both training and validation data, indicating it is too simple to

capture the underlying patterns in the data.

- Learning Rate: Determines the size of the steps taken during parameter updates. Too high a learning rate can

cause the model to overshoot minima, while too low a rate can lead to slow convergence.

- Epochs: The number of times the entire training dataset is passed through the model. More epochs can lead to

better training, but also increase the risk of overfitting.

Performance of Input Image Size for Convolutional Neural Network based Head Detection

www.irjes.com 82 | Page

- Batch Size: The number of training examples used in one iteration of model updates. A larger batch size can

stabilize training but requires more memory.

The training phase is where a machine learning model learns from data by adjusting its parameters to minimize a

loss function. It involves data preparation, model initialization, forward and backward passes, and iteration with

validation. Regularization techniques are used to enhance the model's ability to generalize to new, unseen data.

Proper management of this phase is essential for developing a robust and effective machine learning model.

In this study, we have 2 classes and put the training data in directory:

D:\Riset\[1] DATA_image\INRIA - ku\datasets_2000x2\

 Head_OK\

 head (1).png

 head (2).png

 Head_NG

 neg (1).png

 neg (2).png

Program-2: To create model in Figure 2.

def model():

 model = models.Sequential()

 model.add(layers.Conv2D(64, (3, 3), activation='relu', input_shape=(30, 20, 1)))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Conv2D(32, (3, 3), activation='relu'))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Flatten())

 model.add(layers.Dense(64, activation='relu'))

 model.add(layers.Dense(64, activation='relu'))

 model.add(layers.Dense(num_classes))

 print('')

 model.summary()

 return model

Program-3: To create model in Figure 3.

def model():

 model = models.Sequential()

 model.add(layers.Conv2D(64, (3, 3), activation='relu', input_shape=(60, 40, 1)))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Conv2D(32, (3, 3), activation='relu'))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Conv2D(32, (3, 3), activation='relu'))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Flatten())

 model.add(layers.Dense(100, activation='relu'))

 model.add(layers.Dense(num_classes))

 print('')

 model.summary()

 return model

Program-4: To create model in Figure 4.

def model():

 model = models.Sequential()

 model.add(layers.Conv2D(64, (3, 3), activation='relu', input_shape=(90, 60, 1)))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Conv2D(32, (3, 3), activation='relu'))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Conv2D(32, (3, 3), activation='relu'))

 model.add(layers.MaxPooling2D((2, 2)))

Performance of Input Image Size for Convolutional Neural Network based Head Detection

www.irjes.com 83 | Page

 model.add(layers.Conv2D(32, (3, 3), activation='relu'))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Flatten())

 model.add(layers.Dense(100, activation='relu'))

 model.add(layers.Dense(num_classes))

 print('')

 model.summary()

 return model

Program-5: To train grayscale image size of 30×20 pixels

print('CNN training 30x20 Grayscale, part 3 ..\n'*5)

print("ARZETI_Doyoubi,24.08.2024; 08:20")

print("Panca" +

 " Mudjirahardjo")

print("")

print("===

=")

print('')

optim = input('Optimizer: (1)ADAM, (2)RMSprop : ')

print('')

ep = input('The number of epoch: ')

ep = int(ep)

import numpy as np

import os

os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'

import tensorflow as tf

from tensorflow.keras import layers, models

def model():

 model = models.Sequential()

 model.add(layers.Conv2D(64, (3, 3), activation='relu', input_shape=(30, 20, 1)))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Conv2D(32, (3, 3), activation='relu'))

 model.add(layers.MaxPooling2D((2, 2)))

 model.add(layers.Flatten())

 model.add(layers.Dense(64, activation='relu'))

 model.add(layers.Dense(64, activation='relu'))

 model.add(layers.Dense(num_classes))

 print('')

 model.summary()

 return model

data_dir = "D:\Riset\[1] DATA_image\INRIA - ku\datasets_2000x2"

train_ds = tf.keras.utils.image_dataset_from_directory(

 data_dir,

 validation_split=0.25,

 subset="training",

 seed=123,

 color_mode="grayscale",

 image_size=(30, 20),

Performance of Input Image Size for Convolutional Neural Network based Head Detection

www.irjes.com 84 | Page

 batch_size=20)

val_ds = tf.keras.utils.image_dataset_from_directory(

 data_dir,

 validation_split=0.25,

 subset="validation",

 seed=123,

 color_mode="grayscale",

 image_size=(30, 20),

 batch_size=20)

class_names = train_ds.class_names

print(class_names)

for image_batch, labels_batch in train_ds:

 print(image_batch.shape)

 print(labels_batch.shape)

 break

AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)

val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

num_classes = 2

model.compile(

 optimizer=optim,

 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

 metrics=['accuracy'])

history = model.fit(

 train_ds,

 validation_data=val_ds,

 epochs=ep

)

plt.figure('Model: ' +modelKE +' , optimizer: ' +optim)

plt.plot(history.history['accuracy'], label='train_accuracy')

plt.plot(history.history['val_accuracy'], label = 'val_accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.ylim([0.5, 1])

plt.legend(loc='lower right')

plt.show()

print('')

print(' ----- model evaluate ---- ')

test_loss, test_acc = model.evaluate(val_ds)

model.save('D:\Program\python 3.11.5\Training model\my_model.keras')

VI. Head Detection

Program-6: Head detection for image size of 30×20 pixels, grayscale

print('CNN head detection, part 1 ..\n'*5)

print("ARZETI_Nichiyoubi,18.08.2024; 12:43")

Performance of Input Image Size for Convolutional Neural Network based Head Detection

www.irjes.com 85 | Page

print("Panca" +

 " Mudjirahardjo")

print("")

print("===

========")

print('')

print('-- import library ---')

print('')

import numpy as np

import os

os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'

import cv2 as cv

import tensorflow as tf

from tensorflow.keras import models

from keras.preprocessing import image

oriIMG = cv.imread("D:\Program\output image\person_1.jpg")

h,w,c = oriIMG.shape

print(oriIMG.shape)

print('')

print('-- loading model ---')

model = models.load_model('model30x20_grayscale_adam.keras')

print('')

for r in range(0,h,15):

 for c in range(0,w,10):

 cropped_image = oriIMG[r:r+30,c:c+20]

 test_image = image.img_to_array(cropped_image)

 test_image = np.expand_dims(test_image, axis = 0)

 test_image = np.reshape(test_image,(30,20,3))

 test_image = np.expand_dims(test_image, axis=0)

 result_prob = model.predict(test_image)

 result_label = tf.argmax(result_prob, axis=-1).numpy()[0]

 if result_label == 1:

 cv.rectangle(oriIMG, pt1=(c,r), pt2=(c+20,r+30), color=(0,255,0), thickness=1)

cv.imshow('image',oriIMG)

cv.waitKey(0)

Program-7: Head detection for image size of 30×20 pixels, saliency

print('CNN head detect 30x20 SALIENCY ..\n'*5)

print("ARZETI_Kinyoubi,20.09.2024; 03:38")

print("Panca" +

 " Mudjirahardjo")

Performance of Input Image Size for Convolutional Neural Network based Head Detection

www.irjes.com 86 | Page

print("")

print("===

=============")

print('')

print('-- import library ---')

print('')

import numpy as np

import os

os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'

import cv2 as cv

import tensorflow as tf

from tensorflow.keras import models

from keras.preprocessing import image

people = cv.imread("D:\Program\output image\people.jpg")

cv.imshow('people',people)

cv.waitKey(0)

people =

["person_1.jpg","person_2.jpg","person_3.jpg","person_4.jpg","person_5.jpg","person_6.jpg","person_7.jpg",

 "person_8.jpg","person_9.jpg","person_10.jpg","person_11.jpg","person_12.jpg","person_13.jpg","perso

n_14.jpg",

 "person_15.jpg","person_16.jpg","person_17.jpg","person_18.jpg","person_19.jpg","person_20.jpg"]

org = []

orgKe = 0

for a in people:

 path = 'D:/Program/output image/' +a

 oriIMG = cv.imread(path)

 print(a)

 newIMG1 = oriIMG.copy()

 # create saliencyMap ---

 saliency = cv.saliency.StaticSaliencyFineGrained_create()

 (success, saliencyMap) = saliency.computeSaliency(oriIMG)

 saliencyMap = (saliencyMap * 255).astype("uint8")

 # -----------------------------------

 h,w,c = oriIMG.shape

 print(oriIMG.shape)

 print('')

 print('-- loading model ---')

 model = models.load_model('model30x20_saliency_adam.keras')

 # ---

 i=0

 pos = 0

 for r in range(0,h-30,15):

 for c in range(0,w-20,10):

 i=i+1

 print('blok ke: ',i)

Performance of Input Image Size for Convolutional Neural Network based Head Detection

www.irjes.com 87 | Page

 cropped_1 = saliencyMap[r:r+30,c:c+20]

 test_image = image.img_to_array(cropped_1)

 test_image = np.expand_dims(test_image, axis = 0)

 test_image = np.reshape(test_image,(30,20))

 test_image = np.expand_dims(test_image, axis=0)

 result_prob = model.predict(test_image)

 result_label = tf.argmax(result_prob, axis=-1).numpy()[0]

 if result_label == 1:

 cv.rectangle(newIMG1, pt1=(c,r), pt2=(c+20,r+30), color=(0,255,0), thickness=1)

 pos = pos + 1

 org.append(pos)

 orgKe = orgKe + 1

 print('')

 print('')

 cv.imwrite('D:/Program/output image/out_1_' +a,newIMG1)

 print('')

print(org)

Program-8: Head detection for image size of 60×40 pixels, saliency

print('CNN head detect 60x40 SALIENCY ..\n'*5)

print("DTE_C.1.7_Mokuyoubi,26.09.2024; 13:32")

print("Panca" +

 " Mudjirahardjo")

print("")

print("===

=============")

print('')

print('-- import library ---')

print('')

import numpy as np

import os

os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'

import cv2 as cv

import tensorflow as tf

from tensorflow.keras import models

from keras.preprocessing import image

people = cv.imread("D:\Program\output image\people.jpg")

cv.imshow('people',people)

cv.waitKey(0)

people =

["person_1.jpg","person_2.jpg","person_3.jpg","person_4.jpg","person_5.jpg","person_6.jpg","person_7.jpg",

Performance of Input Image Size for Convolutional Neural Network based Head Detection

www.irjes.com 88 | Page

 "person_8.jpg","person_9.jpg","person_10.jpg","person_11.jpg","person_12.jpg","person_13.jpg","perso

n_14.jpg",

 "person_15.jpg","person_16.jpg","person_17.jpg","person_18.jpg","person_19.jpg","person_20.jpg"]

org = []

orgKe = 0

for a in people:

 path = 'D:/Program/output image/' +a

 oriIMG = cv.imread(path)

 print(a)

 newIMG1 = oriIMG.copy()

 # -----------------------------------

 h,w,c = oriIMG.shape

 print(oriIMG.shape)

 print('')

 print('-- loading model ---')

 model = models.load_model('model60x40_saliency_adam.keras')

 # ---

 i=0

 pos = 0

 for r in range(0,h,15):

 for c in range(0,w,10):

 i=i+1

 print('blok ke: ',i)

 cropped_image = oriIMG[r:r+30,c:c+20]

 resized_image = cv.resize(cropped_image, (40,60))

 # create saliencyMap ---

 saliency = cv.saliency.StaticSaliencyFineGrained_create()

 (success, saliencyMap) = saliency.computeSaliency(resized_image)

 saliencyMap = (saliencyMap * 255).astype("uint8")

 test_image = image.img_to_array(saliencyMap)

 test_image = np.expand_dims(test_image, axis = 0)

 test_image = np.reshape(test_image,(60,40))

 test_image = np.expand_dims(test_image, axis=0)

 result_prob = model.predict(test_image)

 result_label = tf.argmax(result_prob, axis=-1).numpy()[0]

 if result_label == 1:

 cv.rectangle(newIMG1, pt1=(c,r), pt2=(c+20,r+30), color=(0,255,0), thickness=1)

 pos = pos + 1

 org.append(pos)

 orgKe = orgKe + 1

 print('')

 print('')

Performance of Input Image Size for Convolutional Neural Network based Head Detection

www.irjes.com 89 | Page

 cv.imwrite('D:/Program/output image/out_1_' +a,newIMG1)

print(org)

Program-9: Head detection for image size of 90×60 pixels, saliency

print('CNN head detect 90x60 SALIENCY ..\n'*5)

print("ARZETI_Mokuyoubi,26.09.2024; 19:32")

print("Panca" +

 " Mudjirahardjo")

print("")

print("===

=============")

print('')

print('-- import library ---')

print('')

import numpy as np

import os

os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'

import cv2 as cv

import tensorflow as tf

from tensorflow.keras import models

from keras.preprocessing import image

people = cv.imread("D:\Program\output image\people.jpg")

cv.imshow('people',people)

cv.waitKey(0)

people =

["person_1.jpg","person_2.jpg","person_3.jpg","person_4.jpg","person_5.jpg","person_6.jpg","person_7.jpg",

 "person_8.jpg","person_9.jpg","person_10.jpg","person_11.jpg","person_12.jpg","person_13.jpg","perso

n_14.jpg",

 "person_15.jpg","person_16.jpg","person_17.jpg","person_18.jpg","person_19.jpg","person_20.jpg"]

org = []

orgKe = 0

for a in people:

 path = 'D:/Program/output image/' +a

 oriIMG = cv.imread(path)

 print(a)

 newIMG1 = oriIMG.copy()

 # -----------------------------------

 h,w,c = oriIMG.shape

 print(oriIMG.shape)

 print('')

 print('-- loading model ---')

 model = models.load_model('model90x60_saliency_adam.keras')

 # ---

 i=0

Performance of Input Image Size for Convolutional Neural Network based Head Detection

www.irjes.com 90 | Page

 pos = 0

 for r in range(0,h-30,15):

 for c in range(0,w-20,10):

 i=i+1

 print('blok ke: ',i)

 cropped_image = oriIMG[r:r+30,c:c+20]

 resized_image = cv.resize(cropped_image, (60,90))

 # create saliencyMap ---

 saliency = cv.saliency.StaticSaliencyFineGrained_create()

 (success, saliencyMap) = saliency.computeSaliency(resized_image)

 saliencyMap = (saliencyMap * 255).astype("uint8")

 test_image = image.img_to_array(saliencyMap)

 test_image = np.expand_dims(test_image, axis = 0)

 test_image = np.reshape(test_image,(90,60))

 test_image = np.expand_dims(test_image, axis=0)

 result_prob = model.predict(test_image)

 result_label = tf.argmax(result_prob, axis=-1).numpy()[0]

 if result_label == 1:

 cv.rectangle(newIMG1, pt1=(c,r), pt2=(c+20,r+30), color=(0,255,0), thickness=1)

 pos = pos + 1

 org.append(pos)

 orgKe = orgKe + 1

 cv.imwrite('D:/Program/output image/out_1_' +a,newIMG1)

 print('')

print(org)

VII. The Experimental Result
In this section, the experimental procedure and result are briefly explain. This experiment is performed

using programming language python and openCV library. Code program to create CNN model in Figure 2, Figure

3 and Figure 4 are written in Program-2, Program-3 and Program-4 respectively. Code program to train grayscale

image size of 30×20 pixels is written in Program-5.

Code programs of head detection are written in Program-6 until Program-9, with various of image format and

image size.

The model summaries of CNN model is depicted in Figure 7. The training and validation accuracy with adam

optimizer are depicted in Figure 8.

 (a)

Performance of Input Image Size for Convolutional Neural Network based Head Detection

www.irjes.com 91 | Page

 (b) (c)

Figure 7. Model summary of CNN model for image size of (a) 30×20 (b) 60×40 (c) 90×60 pixles.

 (a) (b)

 (c) (d)

Performance of Input Image Size for Convolutional Neural Network based Head Detection

www.irjes.com 92 | Page

 (e) (f)

Figure 8. Accuracy with adam’s optimizer (a) Grayscale 30×20 (b) Saliency 30×20 (c) Grayscale 60×40 (d)

Saliency 60×40 (e) Grayscale 90×60 (f) Saliency 90×60

Figure 9. Some of the scenes used for this experiment [9]

Some of training data in various format are depicted in Figure 10.

 (a) (b) (c)

Figure 10. Some of input format (a) original image [9] (b) grayscale image (c) saliency image

Performance of Input Image Size for Convolutional Neural Network based Head Detection

www.irjes.com 93 | Page

Figure 11. Some of expected and detected result

To evaluate the performance of input image size into CNN, we use the quantities are below:

Accuracy:

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1)

Precision:

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

Recall:

 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

F1-score:

 𝐹1_𝑠𝑐𝑜𝑟𝑒 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (4)

Where:

TP : true positive, i.e. head is detected as head,

TN : true negative, i.e. non-head is detected as non-head,

FP : false positive, i.e. non-head is detected as head,

FN : false negative, i.e. head is detected as non-head.

The detection results are shown in Table 1, Figure 12 and Figure 13. From them, they show the highest F1-score

is achieved by grayscale image, size of 30×20 pixels and adam optimizer. The precision value is low, because

there are many false positives.

Table 1. Performance of head detection

Input format Image Size Optimizer Accuracy Precision Recall F1-score

Grayscale

30×20
ADAM 88.7 41.9 90 57.2

RMSprop 86.1 33 93.3 48.8

60×40
ADAM 89.2 36.2 92.9 52.1

RMSprop 86.8 34.9 88.3 50.0

90×60
ADAM 85.4 35.6 95.6 51.9

RMSprop 81.1 34.4 91.3 50.0

Silency map

30×20
ADAM 87 35 98.3 51.6

RMSprop 78.1 27.9 100 43.6

60×40
ADAM 87.5 33.4 96.3 49.6

RMSprop 83.3 34.6 98.3 51.2

90×60
ADAM 87.4 36 97.5 52.6

RMSprop 85.9 28.2 90 42.9

Performance of Input Image Size for Convolutional Neural Network based Head Detection

www.irjes.com 94 | Page

Figure 12. The performance of different input format and optimizer

Figure 13. F1-score

VIII. Conclusion
From the above study, we evaluate the performance of CNN based head detection with various input image size.

We evaluate grayscale and saliency format as inputs to our CNN model. The experimental result shows grayscale

image with size of 30×20 pixels and adam optimizer has high F1-score.

Our future work is to observe other methods to achieve the best performance, namely increasing the precision

value and F1-score.

Performance of Input Image Size for Convolutional Neural Network based Head Detection

www.irjes.com 95 | Page

References

[1]. Li, B., Zhang, J., Zhang, Z., Xu, Y. A People Counting Method Based on Head Detection and Tracking. 2014 International Conference

on Smart Computing, Hong Kong, China, 2014, pp. 136-141, doi: 10.1109/SMARTCOMP.2014.7043851.
[2]. E. Rehder, H. Kloeden and C. Stiller, Head detection and orientation estimation for pedestrian safety, 17th International IEEE

Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 2014, pp. 2292-2297, doi: 10.1109/ITSC.2014.6958057.

[3]. T. -H. Vu, A. Osokin and I. Laptev, Context-Aware CNNs for Person Head Detection, 2015 IEEE International Conference on
Computer Vision (ICCV), Santiago, Chile, 2015, pp. 2893-2901, doi: 10.1109/ICCV.2015.331.

[4]. Siyuan Chen, F. Bremond, Hung Nguyen and H. Thomas, Exploring depth information for head detection with depth images, 2016

13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Colorado Springs, CO, 2016, pp.
228-234, doi: 10.1109/AVSS.2016.7738060.

[5]. Dezhi Peng , Zikai Sun , Zirong Chen, Zirui Cai, Lele Xie, Lianwen Jin. Detecting Heads using Feature Refine Net and Cascaded

Multi-scale Architecture. 2018 24th International Conference on Pattern Recognition (ICPR) (2018): 2528-2533.
[6]. M. Saqib, S. D. Khan, N. Sharma and M. Blumenstein, Person Head Detection in Multiple Scales Using Deep Convolutional Neural

Networks, 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 2018, pp. 1-7, doi:

10.1109/IJCNN.2018.8489367.
[7]. Y. Wang, L. Zhang, Z. Zuo and X. Cheng, Head-Body Correlation for Robust Crowd Human Detection, 2021 40th Chinese Control

Conference (CCC), Shanghai, China, 2021, pp. 7282-7287, doi: 10.23919/CCC52363.2021.9550747.

[8]. Xiyang Dai, Yinpeng Chen, Bin Xiao, Dongdong Chen, Mengchen Liu, Lu Yuan, Lei Zhang. Dynamic Head: Unifying Object
Detection Heads with Attentions. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021): 7369-

7378.

[9]. N. Dalal and B. Triggs. "Histograms of oriented gradients for human detection," 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR'05), San Diego, CA, USA, 2005, pp. 886-893 vol. 1, doi: 10.1109/CVPR.

[10]. Mudjirahardjo, P., Rahmansyah, A.G., Dianti, A.S.. The Performance of Convolutional Neural Network Architecture in
Classification. International Journal of Computer Applications Technology and Research (IJCATR). Vol. 13, Issue 08. 2024. 115-

122. ISSN: 2319-8656. DOI:10.7753/IJCATR1308.1011.

[11]. Mudjirahardjo, P., Rahmansyah, A.G., Dianti, A.S.. Head Classification based on Convolutional Neural Network. International
Journal of Advanced Multidisciplinary Research and Studies (IJAMRS). Vol. 4, Issue 4. 2024. 982-989. ISSN: 2583-049x.

[12]. Mudjirahardjo, P., Rahmansyah, A.G., Dianti, A.S. The performance of color and grayscale image input in convolutional neural

network based head detection. International Refereed Journal of Engineering and Science (IRJES). Vol. 13, Issue 5. 2024. pp. 45-62.
E-ISSN: 2319-183x.

[13]. Venkatesh S., John De Britto C., Subhashini P., Somasundaram K. Image Enhancement and Implementation of CLAHE Algorithm

and Bilinear Interpolation. Cybernetics and systems: an International Journal. 2022.
[14]. What is saliency map?. https://www.geeksforgeeks.org/what-is-saliency-map/ . 2021.

[15]. Mudjirahardjo, P., Rahmansyah, A.G., Dianti, A.S. A Comparative Study on Input Format for Convoltional Neural Network based

Head Detection. International Journal of Advanced Multidisciplinary Research and Studies (IJAMRS). Vol. 4, Issue 5. 2024. 708-
714. ISSN: 2583-049x.

https://www.geeksforgeeks.org/what-is-saliency-map/

