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Abstract 

In this research, we study and evaluate the performance of CNN based head detection with various input image 

size. We evaluate grayscale and saliency map format as inputs to our CNN model. We use INRIA dataset for 

training and testing data. For training data, we use image size of 30×20 pixels, 60×40 pixels and 90×60 pixels. 

We evaluate the performance of head detection using quantity accuracy, precision, recall and F1-score. The 

experimental result shows grayscale image with size of 30×20 pixels and adam optimizer has high F1-score. 

However, the F1-score of the test model did not show a significant difference. The experiment is conducted using 

programming language python and openCV library.  
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I. Introduction 

Head detection is one of task in computer vision. The objective of head detection is for a smart monitoring 

system, both indoors and outdoors. Head detection and orientation estimation are a vital component in the 

intention recognition of pedestrians. This research still has challenges, due to the complexity of human poses, 

background, lighting conditions, occlusions and camera view-points. Head detection may be more demanding 

than face recognition and pedestrian detection in the scenarios where a face turns away or body parts are occluded 

in the view of a sensor, but locating people is needed.  

Bin Li et.al [1] captured the scene and detected human head from top view. They proposed a novel people 

counting method based on head detection and tracking to evaluate the number of people who move under an over-

head camera. There were four main parts in the proposed method: foreground extraction, head detection, head 

tracking, and crossing-line judgment. The proposed method first utilized an effective foreground extraction 

method to obtain foreground regions of moving people, and some morphological operations were employed to 

optimize the foreground regions. Then it exploited a LBP feature based Adaboost classifier for head detection in 

the optimized foreground regions. After head detection was performed, the candidate head object was tracked by 

a local head tracking method based on Meanshift algorithm. Based on head tracking, the method finally used 

crossing-line judgment to determine whether the candidate head object will be counted or not. Experiments show 

that their method can obtain promising people counting accuracy about 96% and acceptable computation speed 

under different circumstances. 

Eike Rehder, et.al. [2] proposed a novel framework to detect highly occluded pedestrians and estimate 

their head orientation. Detection was performed for pedestrian’s heads only. For this they employed a part-based 

classifier with HOG/SVM combinations. Head orientations were estimated using discrete orientation classifiers 

and LBP features. Results were improved by leveraging orientation estimation for head and torso as well as motion 

information. The orientation estimation was integrated over time using a Hidden Markov Model. From the discrete 

model they obtained a continuous head orientation. They evaluated their approach on image sequences with 

ground truth orientation measurements.  

Tuan-Hung Vu, et.al. [3] focused on detecting human heads in natural scenes. Starting from the recent 

local R-CNN object detector, they extended it with two types of contextual cues. First, they leveraged person-

scene relations and proposed a Global CNN model trained to predict positions and scales of heads directly from 

the full image. Second, they explicitly modeled pairwise relations among objects and trained a Pairwise CNN 

model using a structured-output surrogate loss. The Local, Global and Pairwise models were combined into a joint 

CNN framework. To train and test their full model, they introduced a large dataset composed of 369, 846 human 

heads annotated in 224, 740 movie frames. They evaluated their method and demonstrated improvements of 

person head detection against several recent baselines in three datasets.  

Siyuan Chen, et.al. [4] introduced an efficient head detection approach for single depth images at low 

computational expense. First, a novel head descriptor was developed and used to classify pixels as head or non-
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head. They used depth values to guide each window size, to eliminate false positives of head centers, and to cluster 

head pixels, which significantly reduced the computation costs of searching for appropriate parameters. High head 

detection performance were achieved in experiments – 90% accuracy for our dataset containing heads with 

different body postures, head poses, and distances to a Kinect2 sensor, and above 70% precision on a public 

dataset composed of a few daily activities, which is higher than using a head-shoulder detector with HOG feature 

for depth images. 

Dexhi Peng, et.al. [5] presented a method that can accurately detect heads especially small heads under 

the indoor scene. To achieve this, they proposed a novel method, Feature Refine Net (FRN), and a cascaded multi-

scale architecture. FRN exploits the multi-scale hierarchical features created by deep convolutional neural 

networks. The proposed channel weighting method enables FRN to make use of features alternatively and 

effectively. To improve the performance of small head detection, they proposed a cascaded multi-scale 

architecture which has two detectors. One called global detector was responsible for detecting large objects and 

acquiring the global distribution information. The other called local detector was designed for small objects 

detection and made use of the information provided by global detector. Due to the lack of head detection datasets, 

they had collected and labeled a new large dataset named SCUT-HEAD which includes 4405 images with 111251 

heads annotated. Experiments show that their method had achieved state-of-the-art performance on SCUT-HEAD. 

Muhammad Saqib, et.al. [6] detected human heads in natural scenes acquired from a publicly available 

dataset of Hollywood movies. In this work, we had used state-of-the-art object detectors based on deep 

convolutional neural networks. These object detectors include region-based convolutional neural networks using 

region proposals for detections. Also, object detectors that detect objects in the single-shot by looking at the image 

only once for detections. They had used transfer learning for fine-tuning the network already trained on a massive 

amount of data. During the fine-tuning process, the models having high mean Average Precision (mAP) were 

used for evaluation of the test dataset.  

Yijing Wang, et.al. [7] developed a simple effective proposal-based human head and body detection 

framework in crowded scenes. Human heads were too small for detectors to locate and human bodies were 

frequently occluded in the crowds, which required more robust location capability of detectors. To tackle the 

issues above, they proposed a head-body correlation module to utilize the location prior knowledge of human 

body and human head. Compared with Faster R-CNN, their approach can improve the Average Precision (AP) 

gains for human body and head detection by 2.15% and 2.52% on the challenging CrowdHuman dataset. 

Xiyang Dai, et.al. [8] presented a novel dynamic head framework to unify object detection heads with 

attentions. By coherently combining multiple self-attention mechanisms between feature levels for scale 

awareness, among spatial locations for spatial-awareness, and within output channels for task-awareness, the 

proposed approach significantly improved the representation ability of object detection heads without any 

computational overhead. Further experiments demonstrated that the effectiveness and efficiency of the proposed 

dynamic head on the COCO benchmark. With a standard ResNeXt-101- DCN backbone, they largely improved 

the performance over popular object detectors and achieved a new state-of-the-art at 54.0 AP. Furthermore, with 

latest transformer backbone and extra data, they can push current best COCO result to a new record at 60.6 AP 

 

II. The Proposed Study 

In this section, we briefly explain the proposed study to evaluate the performance of various input image 

size for convolutional neural network. We evaluate grayscale and saliency map as an input image. The study 

method is shown in Figure 1. Our architecture in this study use the architecture in Figure 2 for image size of 30×20 

pixels. The architecture has been evaluated in [11-12]. The architecture in Figure 3 is for image size of 60×40 

pixels. And the architecture in Figure 4 is for image size of 90×60 pixels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The proposed method of this study 
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Figure 2. The CNN model we used for image size of 30×20 pixels [12] 

 

 
Figure 3. The CNN model we used for image size of 60×40 pixels 

 

 
Figure 4. The CNN model we used for image size of 90×60 pixels 

 

III. Saliency map 

Saliency Map is an image in which the brightness of a pixel represents how salient the pixel is i.e  brightness of 

a pixel is directly proportional to its saliency. It is generally a grayscale image. Saliency maps are also called 

as a heat map where hotness refers to those regions of the image which have a big impact on predicting the 

class which the object belongs to [14].  

The purpose of the saliency map is to find the regions which are prominent or noticeable at every location in 

the visual field and to guide the selection of attended locations, based on the spatial distribution of saliency.   

It is used in various Visual Attention models.  

Here is an example, the picture shown in the right is the saliency map of the left one which shows the regions 

which are more attentive part to CNN.  

 

 
Figure 5. The result of saliency map [14] 

 

In General, we take an image as input and we use the whole image to predict the output. So if we have 

an image of a bird and we predict bird but not the whole input is actually important and not the whole input 

contributes equally to predict the output. So if we have a really big image where only a few pixels the class we 

want to predict so computing the whole input is not a good idea i.e why we use a saliency map to highlight the 

important regions of the image and processed only the highlighted parts. It will actually help to relieve the 

computational burden.   
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It is created by using the following Steps.  

 We have an image and the basic features like colour, orientation, the intensity is extracted from the 

image.  

 These processed images are used to create Gaussian pyramids to create features Map.  

 Saliency map is created by taking the mean of all the feature maps. 

 

Program-1: To create a saliency map. 

 

import cv2 as cv 

img = cv.imread(‘image.jpg’) 

 

# -- SALIENCY detection -- 

sal= cv.saliency.StaticSaliencyFineGrained_create() 

(success, saliencyMap) = sal.computeSaliency(img) 

saliencyMap = (saliencyMap * 255).astype("uint8") 

  

IV. Convolutional Neural Network 

A Convolutional Neural Network (CNN) is a type of artificial neural network designed primarily for processing 

structured grid data, such as images. Here's a brief overview of its key components and how it works: 

 
Figure 6. The simple CNN 

Key Components 

1. Convolutional Layers: These layers apply convolutional filters (kernels) to the input data. Each filter detects 

specific features such as edges or textures. As the filter slides over the input image, it produces feature maps that 

represent the presence of these features. 

2. Activation Functions: After convolution, activation functions like ReLU (Rectified Linear Unit) introduce non-

linearity to the model, helping it learn more complex patterns. 

3. Pooling Layers: These layers reduce the spatial dimensions (width and height) of the feature maps while 

retaining the most important information. Common pooling operations include max pooling (taking the maximum 

value in a region) and average pooling. 

4. Fully Connected Layers: After several convolutional and pooling layers, the network typically includes one or 

more fully connected layers that perform classification or regression based on the extracted features. 

5. Dropout Layers: To prevent overfitting, dropout layers randomly "drop" (set to zero) a fraction of the neurons 

during training, which helps the network generalize better to new, unseen data. 

 

How It Works 

1. Feature Extraction: CNNs automatically learn and extract features from the input data. For an image, this means 

learning to detect edges, textures, and more complex structures as you go deeper into the network. 

2. Hierarchical Learning: Lower layers in the network might learn simple features like edges, while higher layers 

combine these features to detect more complex structures, such as shapes or objects. 

3. Classification/Regression: After extracting features, CNNs use fully connected layers to classify the image into 

categories or predict values if used for regression tasks. 

 

Applications 

CNNs are widely used in various fields: 

- Image Recognition: Identifying objects, people, or scenes in images. 

- Object Detection: Locating objects within an image and classifying them. 

- Semantic Segmentation: Assigning a class to each pixel in an image. 

- Video Analysis: Recognizing actions or events in video frames. 

- Medical Imaging: Analyzing medical scans for disease detection or diagnosis. 
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V. Training phase 
The training phase in machine learning is a crucial part of developing a model that can make accurate predictions 

or decisions based on data. Here's a detailed look at what happens during the training phase: 

 

Steps in the Training Phase 

1. Data Preparation 

- Data Collection: Gather the dataset that will be used for training. This could be from various sources like 

databases, web scraping, or existing datasets. 

- Data Cleaning: Handle missing values, remove duplicates, and correct errors to ensure the data is of high quality. 

- Data Splitting: Divide the dataset into training, validation, and test sets. Typically, the training set is used to train 

the model, the validation set is used to tune hyperparameters, and the test set is used to evaluate the model's 

performance. 

2. Model Initialization 

- Choosing a Model: Select an appropriate model or algorithm based on the problem type (e.g., linear regression, 

decision tree, neural network). 

- Initializing Parameters: Set initial values for the model's parameters. For complex models like neural networks, 

these are often initialized randomly. 

3. Forward Pass 

- Input Data: Feed a batch of training data into the model. 

- Prediction: The model processes the input data through its layers (in the case of neural networks) and generates 

predictions or outputs. 

4. Loss Calculation 

- Loss Function: Compute the loss (or error) by comparing the model's predictions with the actual target values 

using a loss function (e.g., mean squared error, cross-entropy loss). 

- Objective: The goal is to minimize this loss function. 

5. Backward Pass (Backpropagation in Neural Networks) 

- Gradient Calculation: Calculate the gradients of the loss function with respect to each model parameter using 

techniques like gradient descent. 

- Parameter Update: Adjust the model parameters based on the gradients to reduce the loss. This involves using 

an optimizer (e.g., SGD, Adam) to apply updates. 

6. Iteration 

- Epochs: Repeat the forward pass, loss calculation, and backward pass for multiple epochs (iterations over the 

entire training dataset). 

- Mini-batch Processing: For large datasets, data is often processed in smaller mini-batches rather than all at once. 

7. Validation 

- Hyperparameter Tuning: Use the validation set to tune hyperparameters (e.g., learning rate, number of layers) 

and make adjustments to improve performance. 

- Model Evaluation: Periodically evaluate the model on the validation set to monitor its performance and ensure 

it is not overfitting. 

8. Regularization 

- Techniques: Apply regularization techniques (e.g., dropout, L2 regularization) to prevent overfitting and 

improve generalization. 

- Early Stopping: Monitor validation performance and stop training if performance on the validation set starts to 

degrade. 

9. Model Saving 

- Checkpointing: Save the model parameters and state at different points during training, especially after 

significant improvements. 

- Best Model: Save the best performing model based on validation metrics. 

 

Key Concepts 

- Overfitting: The model performs well on training data but poorly on validation/test data. This often means the 

model has learned noise in the training data. 

- Underfitting: The model performs poorly on both training and validation data, indicating it is too simple to 

capture the underlying patterns in the data. 

- Learning Rate: Determines the size of the steps taken during parameter updates. Too high a learning rate can 

cause the model to overshoot minima, while too low a rate can lead to slow convergence. 

- Epochs: The number of times the entire training dataset is passed through the model. More epochs can lead to 

better training, but also increase the risk of overfitting. 
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- Batch Size: The number of training examples used in one iteration of model updates. A larger batch size can 

stabilize training but requires more memory. 

 

The training phase is where a machine learning model learns from data by adjusting its parameters to minimize a 

loss function. It involves data preparation, model initialization, forward and backward passes, and iteration with 

validation. Regularization techniques are used to enhance the model's ability to generalize to new, unseen data. 

Proper management of this phase is essential for developing a robust and effective machine learning model. 

In this study, we have 2 classes and put the training data in directory: 

D:\Riset\[1] DATA_image\INRIA - ku\datasets_2000x2\ 

 Head_OK\  

  head (1).png 

  head (2).png 

  --- 

  --- 

 Head_NG 

  neg (1).png 

  neg (2).png 

  --- 

  ---  

 

Program-2: To create model in Figure 2. 

def model(): 

    model = models.Sequential() 

    model.add(layers.Conv2D(64, (3, 3), activation='relu', input_shape=(30, 20, 1))) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Conv2D(32, (3, 3), activation='relu')) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Flatten()) 

    model.add(layers.Dense(64, activation='relu')) 

    model.add(layers.Dense(64, activation='relu')) 

    model.add(layers.Dense(num_classes)) 

    print('') 

    model.summary() 

    return model 

 

Program-3: To create model in Figure 3. 

def model(): 

    model = models.Sequential() 

    model.add(layers.Conv2D(64, (3, 3), activation='relu', input_shape=(60, 40, 1))) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Conv2D(32, (3, 3), activation='relu')) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Conv2D(32, (3, 3), activation='relu')) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Flatten()) 

    model.add(layers.Dense(100, activation='relu')) 

    model.add(layers.Dense(num_classes)) 

    print('') 

    model.summary() 

    return model 

 

Program-4: To create model in Figure 4. 

def model(): 

    model = models.Sequential() 

    model.add(layers.Conv2D(64, (3, 3), activation='relu', input_shape=(90, 60, 1))) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Conv2D(32, (3, 3), activation='relu')) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Conv2D(32, (3, 3), activation='relu')) 

    model.add(layers.MaxPooling2D((2, 2))) 
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    model.add(layers.Conv2D(32, (3, 3), activation='relu')) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Flatten()) 

    model.add(layers.Dense(100, activation='relu')) 

    model.add(layers.Dense(num_classes)) 

    print('') 

    model.summary() 

    return model 

 

Program-5: To train grayscale image size of 30×20 pixels 

print('CNN training 30x20 Grayscale, part 3 ..\n'*5) 

print("ARZETI_Doyoubi,24.08.2024; 08:20") 

print("Panca" + 

      " Mudjirahardjo") 

print("") 

print("===========================================================================

=") 

 

print('') 

optim = input('Optimizer: (1)ADAM, (2)RMSprop : ')  

print('') 

ep = input('The number of epoch: ') 

ep = int(ep) 

 

# ------------------------------------------------------------------------------------- 

 

import numpy as np 

import os 

os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' 

 

import tensorflow as tf 

from tensorflow.keras import layers, models 

 

# -------------------------------------------------------------------------------------  

 

def model(): 

    model = models.Sequential() 

    model.add(layers.Conv2D(64, (3, 3), activation='relu', input_shape=(30, 20, 1))) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Conv2D(32, (3, 3), activation='relu')) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Flatten()) 

    model.add(layers.Dense(64, activation='relu')) 

    model.add(layers.Dense(64, activation='relu')) 

    model.add(layers.Dense(num_classes)) 

    print('') 

    model.summary() 

    return model 

 

# -------------------------------------------------------------------------------------  

 

data_dir = "D:\Riset\[1] DATA_image\INRIA - ku\datasets_2000x2" 

 

train_ds = tf.keras.utils.image_dataset_from_directory( 

  data_dir, 

  validation_split=0.25,             

  subset="training", 

  seed=123, 

  color_mode="grayscale", 

  image_size=(30, 20), 
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  batch_size=20) 

 

val_ds = tf.keras.utils.image_dataset_from_directory( 

  data_dir, 

  validation_split=0.25,             

  subset="validation", 

  seed=123, 

  color_mode="grayscale", 

  image_size=(30, 20), 

  batch_size=20) 

 

class_names = train_ds.class_names 

print(class_names) 

 

for image_batch, labels_batch in train_ds: 

  print(image_batch.shape) 

  print(labels_batch.shape) 

  break 

 

AUTOTUNE = tf.data.AUTOTUNE 

 

train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE) 

val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) 

 

num_classes = 2 

 

# -------------------------------------------------------------------------------------  

 

model.compile( 

  optimizer=optim, 

  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), 

  metrics=['accuracy']) 

 

history = model.fit( 

  train_ds, 

  validation_data=val_ds, 

  epochs=ep 

) 

 

plt.figure('Model: ' +modelKE +' , optimizer: ' +optim) 

plt.plot(history.history['accuracy'], label='train_accuracy') 

plt.plot(history.history['val_accuracy'], label = 'val_accuracy') 

plt.xlabel('Epoch') 

plt.ylabel('Accuracy') 

plt.ylim([0.5, 1]) 

plt.legend(loc='lower right') 

plt.show() 

 

print('') 

print(' ----- model evaluate ---- ') 

test_loss, test_acc = model.evaluate(val_ds)         

 

model.save('D:\Program\python 3.11.5\Training model\my_model.keras') 

 

VI. Head Detection 
 

Program-6: Head detection for image size of 30×20 pixels, grayscale  

print('CNN head detection, part 1 ..\n'*5) 

print("ARZETI_Nichiyoubi,18.08.2024; 12:43") 
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print("Panca" + 

      " Mudjirahardjo") 

print("") 

print("===========================================================================

========") 

 

print('') 

print('-- import library ---') 

print('') 

 

import numpy as np 

import os 

os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' 

 

import cv2 as cv 

import tensorflow as tf 

from tensorflow.keras import models 

from keras.preprocessing import image 

 

# -------------------------------------------------------------------------------------  

 

oriIMG = cv.imread("D:\Program\output image\person_1.jpg") 

 

h,w,c = oriIMG.shape 

print(oriIMG.shape) 

 

# -------------------------------------------------------------------------------------  

 

print('') 

print('-- loading model ---') 

 

model = models.load_model('model30x20_grayscale_adam.keras') 

 

print('') 

 

# ------------------------------------------------------------------------------------- 

 

for r in range(0,h,15): 

    for c in range(0,w,10): 

        cropped_image = oriIMG[r:r+30,c:c+20] 

 

        test_image = image.img_to_array(cropped_image) 

        test_image = np.expand_dims(test_image, axis = 0) 

        test_image = np.reshape(test_image,(30,20,3)) 

        test_image = np.expand_dims(test_image, axis=0) 

        result_prob = model.predict(test_image) 

 

        result_label = tf.argmax(result_prob, axis=-1).numpy()[0] 

 

        if result_label == 1: 

            cv.rectangle(oriIMG, pt1=(c,r), pt2=(c+20,r+30), color=(0,255,0), thickness=1) 

 

cv.imshow('image',oriIMG) 

cv.waitKey(0) 

 

Program-7: Head detection for image size of 30×20 pixels, saliency  

print('CNN head detect 30x20 SALIENCY ..\n'*5) 

print("ARZETI_Kinyoubi,20.09.2024; 03:38") 

print("Panca" + 

      " Mudjirahardjo") 
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print("") 

print("===========================================================================

=============") 

 

print('') 

print('-- import library ---') 

print('') 

 

import numpy as np 

import os 

os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' 

 

import cv2 as cv 

import tensorflow as tf 

from tensorflow.keras import models 

from keras.preprocessing import image 

 

# -------------------------------------------------------------------------------------  

 

people = cv.imread("D:\Program\output image\people.jpg") 

cv.imshow('people',people) 

cv.waitKey(0) 

 

people = 

["person_1.jpg","person_2.jpg","person_3.jpg","person_4.jpg","person_5.jpg","person_6.jpg","person_7.jpg", 

          "person_8.jpg","person_9.jpg","person_10.jpg","person_11.jpg","person_12.jpg","person_13.jpg","perso

n_14.jpg", 

          "person_15.jpg","person_16.jpg","person_17.jpg","person_18.jpg","person_19.jpg","person_20.jpg"] 

 

org = [] 

orgKe = 0 

for a in people: 

    path = 'D:/Program/output image/' +a 

    oriIMG = cv.imread(path) 

    print(a) 

 

    newIMG1 = oriIMG.copy() 

 

    # create saliencyMap --- 

    saliency = cv.saliency.StaticSaliencyFineGrained_create() 

    (success, saliencyMap) = saliency.computeSaliency(oriIMG) 

    saliencyMap = (saliencyMap * 255).astype("uint8") 

 

    # ----------------------------------- 

    h,w,c = oriIMG.shape 

    print(oriIMG.shape) 

 

    print('') 

    print('-- loading model ---') 

 

    model = models.load_model('model30x20_saliency_adam.keras') 

    # -------------------------------------------------------------------------------------  

 

    i=0 

    pos = 0 

    for r in range(0,h-30,15): 

        for c in range(0,w-20,10): 

            i=i+1 

            print('blok ke: ',i) 
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            cropped_1 = saliencyMap[r:r+30,c:c+20] 

 

            test_image = image.img_to_array(cropped_1) 

            test_image = np.expand_dims(test_image, axis = 0) 

            test_image = np.reshape(test_image,(30,20)) 

            test_image = np.expand_dims(test_image, axis=0) 

            result_prob = model.predict(test_image) 

 

            result_label = tf.argmax(result_prob, axis=-1).numpy()[0] 

             

            if result_label == 1: 

                cv.rectangle(newIMG1, pt1=(c,r), pt2=(c+20,r+30), color=(0,255,0), thickness=1) 

                pos = pos + 1 

   

    org.append(pos) 

     

    orgKe = orgKe + 1 

 

    print('') 

    print('') 

 

    cv.imwrite('D:/Program/output image/out_1_' +a,newIMG1) 

     

    print('') 

 

print(org) 

 

 

Program-8: Head detection for image size of 60×40 pixels, saliency  

 

print('CNN head detect 60x40 SALIENCY ..\n'*5) 

print("DTE_C.1.7_Mokuyoubi,26.09.2024; 13:32") 

print("Panca" + 

      " Mudjirahardjo") 

print("") 

print("===========================================================================

=============") 

 

print('') 

print('-- import library ---') 

print('') 

 

import numpy as np 

import os 

os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' 

 

import cv2 as cv 

import tensorflow as tf 

from tensorflow.keras import models 

from keras.preprocessing import image 

 

# -------------------------------------------------------------------------------------  

 

people = cv.imread("D:\Program\output image\people.jpg") 

cv.imshow('people',people) 

cv.waitKey(0) 

 

people = 

["person_1.jpg","person_2.jpg","person_3.jpg","person_4.jpg","person_5.jpg","person_6.jpg","person_7.jpg", 
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          "person_8.jpg","person_9.jpg","person_10.jpg","person_11.jpg","person_12.jpg","person_13.jpg","perso

n_14.jpg", 

          "person_15.jpg","person_16.jpg","person_17.jpg","person_18.jpg","person_19.jpg","person_20.jpg"] 

 

org = [] 

orgKe = 0 

for a in people: 

    path = 'D:/Program/output image/' +a 

    oriIMG = cv.imread(path) 

    print(a) 

 

    newIMG1 = oriIMG.copy() 

 

 

    # ----------------------------------- 

    h,w,c = oriIMG.shape 

    print(oriIMG.shape) 

 

    print('') 

    print('-- loading model ---') 

 

    model = models.load_model('model60x40_saliency_adam.keras') 

 

    # ------------------------------------------------------------------------------------- 

 

    i=0 

    pos = 0 

    for r in range(0,h,15): 

        for c in range(0,w,10): 

            i=i+1 

            print('blok ke: ',i) 

 

            cropped_image = oriIMG[r:r+30,c:c+20] 

 

            resized_image = cv.resize(cropped_image, (40,60)) 

 

            # create saliencyMap --- 

            saliency = cv.saliency.StaticSaliencyFineGrained_create() 

            (success, saliencyMap) = saliency.computeSaliency(resized_image) 

            saliencyMap = (saliencyMap * 255).astype("uint8") 

 

            test_image = image.img_to_array(saliencyMap) 

            test_image = np.expand_dims(test_image, axis = 0) 

            test_image = np.reshape(test_image,(60,40)) 

            test_image = np.expand_dims(test_image, axis=0) 

            result_prob = model.predict(test_image) 

 

            result_label = tf.argmax(result_prob, axis=-1).numpy()[0] 

             

            if result_label == 1: 

                cv.rectangle(newIMG1, pt1=(c,r), pt2=(c+20,r+30), color=(0,255,0), thickness=1) 

                pos = pos + 1 

 

    

    org.append(pos) 

     

    orgKe = orgKe + 1 

 

    print('') 

    print('') 
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    cv.imwrite('D:/Program/output image/out_1_' +a,newIMG1) 

 

print(org) 

 

Program-9: Head detection for image size of 90×60 pixels, saliency  

 

print('CNN head detect 90x60 SALIENCY ..\n'*5) 

print("ARZETI_Mokuyoubi,26.09.2024; 19:32") 

print("Panca" + 

      " Mudjirahardjo") 

print("") 

print("===========================================================================

=============") 

 

print('') 

print('-- import library ---') 

print('') 

 

import numpy as np 

import os 

os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' 

 

import cv2 as cv 

import tensorflow as tf 

from tensorflow.keras import models 

from keras.preprocessing import image 

 

# -------------------------------------------------------------------------------------  

people = cv.imread("D:\Program\output image\people.jpg") 

cv.imshow('people',people) 

cv.waitKey(0) 

 

people = 

["person_1.jpg","person_2.jpg","person_3.jpg","person_4.jpg","person_5.jpg","person_6.jpg","person_7.jpg", 

          "person_8.jpg","person_9.jpg","person_10.jpg","person_11.jpg","person_12.jpg","person_13.jpg","perso

n_14.jpg", 

          "person_15.jpg","person_16.jpg","person_17.jpg","person_18.jpg","person_19.jpg","person_20.jpg"] 

 

org = [] 

orgKe = 0 

for a in people: 

    path = 'D:/Program/output image/' +a 

    oriIMG = cv.imread(path) 

    print(a) 

 

    newIMG1 = oriIMG.copy() 

 

    # ----------------------------------- 

    h,w,c = oriIMG.shape 

    print(oriIMG.shape) 

 

    print('') 

    print('-- loading model ---') 

 

    model = models.load_model('model90x60_saliency_adam.keras') 

 

    # -------------------------------------------------------------------------------------  

 

    i=0 
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    pos = 0 

    for r in range(0,h-30,15): 

        for c in range(0,w-20,10): 

            i=i+1 

            print('blok ke: ',i) 

 

            cropped_image = oriIMG[r:r+30,c:c+20] 

 

            resized_image = cv.resize(cropped_image, (60,90)) 

 

            # create saliencyMap --- 

            saliency = cv.saliency.StaticSaliencyFineGrained_create() 

            (success, saliencyMap) = saliency.computeSaliency(resized_image) 

            saliencyMap = (saliencyMap * 255).astype("uint8") 

 

            test_image = image.img_to_array(saliencyMap) 

            test_image = np.expand_dims(test_image, axis = 0) 

            test_image = np.reshape(test_image,(90,60)) 

            test_image = np.expand_dims(test_image, axis=0) 

            result_prob = model.predict(test_image) 

 

            result_label = tf.argmax(result_prob, axis=-1).numpy()[0] 

             

            if result_label == 1: 

                cv.rectangle(newIMG1, pt1=(c,r), pt2=(c+20,r+30), color=(0,255,0), thickness=1) 

                pos = pos + 1 

    

    org.append(pos) 

     

    orgKe = orgKe + 1 

 

    cv.imwrite('D:/Program/output image/out_1_' +a,newIMG1) 

    print('') 

 

print(org) 

 

VII. The Experimental Result 
In this section, the experimental procedure and result are briefly explain. This experiment is performed 

using programming language python and openCV library.  Code program to create CNN model in Figure 2, Figure 

3 and Figure 4 are written in Program-2, Program-3 and Program-4 respectively. Code program to train grayscale 

image size of 30×20 pixels is written in Program-5. 

Code programs of head detection are written in Program-6 until Program-9, with various of image format and 

image size. 

The model summaries of CNN model is depicted in Figure 7. The training and validation accuracy with adam 

optimizer are depicted in Figure 8. 

 

 (a) 
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                                          (b)                                                                                      (c) 

Figure 7. Model summary of CNN model for image size of (a) 30×20 (b) 60×40 (c) 90×60 pixles. 

 

   
                                          (a)                                                                             (b) 

  
                                         (c)                                                                            (d) 
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                                         (e)                                                                            (f) 

Figure 8. Accuracy with adam’s optimizer (a) Grayscale 30×20 (b) Saliency 30×20 (c) Grayscale 60×40 (d) 

Saliency 60×40 (e) Grayscale 90×60 (f) Saliency 90×60 

 

 
Figure 9. Some of the scenes used for this experiment [9] 

 

Some of training data in various format are depicted in Figure 10. 

 

    

    

    
          (a)                   (b)                  (c)    

Figure 10. Some of input format (a) original image [9] (b) grayscale image (c) saliency image 
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Figure 11. Some of expected and detected result 

 

To evaluate the performance of input image size into CNN, we use the quantities are below: 

Accuracy:  

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
        (1) 

Precision: 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
         (2) 

Recall: 

 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (3) 

F1-score: 

 𝐹1_𝑠𝑐𝑜𝑟𝑒 =  
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
        (4) 

 

Where: 

TP : true positive, i.e. head is detected as head, 

TN : true negative, i.e. non-head is detected as non-head, 

FP : false positive, i.e. non-head is detected as head, 

FN : false negative, i.e. head is detected as non-head. 

 

The detection results are shown in Table 1, Figure 12 and Figure 13. From them, they show the highest F1-score 

is achieved by grayscale image, size of 30×20 pixels and adam optimizer. The precision value is low, because 

there are many false positives. 

 

Table 1. Performance of head detection 

Input format Image Size Optimizer Accuracy Precision Recall F1-score 

Grayscale 

30×20 
ADAM 88.7 41.9 90 57.2 

RMSprop 86.1 33 93.3 48.8 

60×40 
ADAM 89.2 36.2 92.9 52.1 

RMSprop 86.8 34.9 88.3 50.0 

90×60 
ADAM 85.4 35.6 95.6 51.9 

RMSprop 81.1 34.4 91.3 50.0 

Silency map 

30×20 
ADAM 87 35 98.3 51.6 

RMSprop 78.1 27.9 100 43.6 

60×40 
ADAM 87.5 33.4 96.3 49.6 

RMSprop 83.3 34.6 98.3 51.2 

90×60 
ADAM 87.4 36 97.5 52.6 

RMSprop 85.9 28.2 90 42.9 
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Figure 12. The performance of different input format and optimizer 

 
Figure 13. F1-score 

 

VIII. Conclusion 
From the above study, we evaluate the performance of CNN based head detection with various input image size. 

We evaluate grayscale and saliency format as inputs to our CNN model. The experimental result shows grayscale 

image with size of 30×20 pixels and adam optimizer has high F1-score. 

 

Our future work is to observe other methods to achieve the best performance, namely increasing the precision 

value and F1-score. 
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